Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,530 @@
# Pymatgen Analysis Modules Reference
This reference documents pymatgen's extensive analysis capabilities for materials characterization, property prediction, and computational analysis.
## Phase Diagrams and Thermodynamics
### Phase Diagram Construction
```python
from pymatgen.analysis.phase_diagram import PhaseDiagram, PDPlotter
from pymatgen.entries.computed_entries import ComputedEntry
# Create entries (composition and energy per atom)
entries = [
ComputedEntry("Fe", -8.4),
ComputedEntry("O2", -4.9),
ComputedEntry("FeO", -6.7),
ComputedEntry("Fe2O3", -8.3),
ComputedEntry("Fe3O4", -9.1),
]
# Build phase diagram
pd = PhaseDiagram(entries)
# Get stable entries
stable_entries = pd.stable_entries
# Get energy above hull (stability)
entry_to_test = ComputedEntry("Fe2O3", -8.0)
energy_above_hull = pd.get_e_above_hull(entry_to_test)
# Get decomposition products
decomp = pd.get_decomposition(entry_to_test.composition)
# Returns: {entry1: fraction1, entry2: fraction2, ...}
# Get equilibrium reaction energy
rxn_energy = pd.get_equilibrium_reaction_energy(entry_to_test)
# Plot phase diagram
plotter = PDPlotter(pd)
plotter.show()
plotter.write_image("phase_diagram.png")
```
### Chemical Potential Diagrams
```python
from pymatgen.analysis.phase_diagram import ChemicalPotentialDiagram
# Create chemical potential diagram
cpd = ChemicalPotentialDiagram(entries, limits={"O": (-10, 0)})
# Get domains (stability regions)
domains = cpd.domains
```
### Pourbaix Diagrams
Electrochemical phase diagrams with pH and potential axes.
```python
from pymatgen.analysis.pourbaix_diagram import PourbaixDiagram, PourbaixPlotter
from pymatgen.entries.computed_entries import ComputedEntry
# Create entries with corrections for aqueous species
entries = [...] # Include solids and ions
# Build Pourbaix diagram
pb = PourbaixDiagram(entries)
# Get stable entry at specific pH and potential
stable_entry = pb.get_stable_entry(pH=7, V=0)
# Plot
plotter = PourbaixPlotter(pb)
plotter.show()
```
## Structure Analysis
### Structure Matching and Comparison
```python
from pymatgen.analysis.structure_matcher import StructureMatcher
matcher = StructureMatcher()
# Check if structures match
is_match = matcher.fit(struct1, struct2)
# Get mapping between structures
mapping = matcher.get_mapping(struct1, struct2)
# Group similar structures
grouped = matcher.group_structures([struct1, struct2, struct3, ...])
```
### Ewald Summation
Calculate electrostatic energy of ionic structures.
```python
from pymatgen.analysis.ewald import EwaldSummation
ewald = EwaldSummation(struct)
total_energy = ewald.total_energy # In eV
forces = ewald.forces # Forces on each site
```
### Symmetry Analysis
```python
from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
sga = SpacegroupAnalyzer(struct)
# Get space group information
spacegroup_symbol = sga.get_space_group_symbol() # e.g., "Fm-3m"
spacegroup_number = sga.get_space_group_number() # e.g., 225
crystal_system = sga.get_crystal_system() # e.g., "cubic"
# Get symmetrized structure
sym_struct = sga.get_symmetrized_structure()
equivalent_sites = sym_struct.equivalent_sites
# Get conventional/primitive cells
conventional = sga.get_conventional_standard_structure()
primitive = sga.get_primitive_standard_structure()
# Get symmetry operations
symmetry_ops = sga.get_symmetry_operations()
```
## Local Environment Analysis
### Coordination Environment
```python
from pymatgen.analysis.local_env import (
VoronoiNN, # Voronoi tessellation
CrystalNN, # Crystal-based
MinimumDistanceNN, # Distance cutoff
BrunnerNN_real, # Brunner method
)
# Voronoi nearest neighbors
voronoi = VoronoiNN()
neighbors = voronoi.get_nn_info(struct, n=0) # Neighbors of site 0
# CrystalNN (recommended for most cases)
crystalnn = CrystalNN()
neighbors = crystalnn.get_nn_info(struct, n=0)
# Analyze all sites
for i, site in enumerate(struct):
neighbors = voronoi.get_nn_info(struct, i)
coordination_number = len(neighbors)
print(f"Site {i} ({site.species_string}): CN = {coordination_number}")
```
### Coordination Geometry (ChemEnv)
Detailed coordination environment identification.
```python
from pymatgen.analysis.chemenv.coordination_environments.coordination_geometry_finder import LocalGeometryFinder
from pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies import SimplestChemenvStrategy
lgf = LocalGeometryFinder()
lgf.setup_structure(struct)
# Get coordination environment for site
se = lgf.compute_structure_environments(only_indices=[0])
strategy = SimplestChemenvStrategy()
lse = strategy.get_site_coordination_environment(se[0])
print(f"Coordination: {lse}")
```
### Bond Valence Sum
```python
from pymatgen.analysis.bond_valence import BVAnalyzer
bva = BVAnalyzer()
# Calculate oxidation states
valences = bva.get_valences(struct)
# Get structure with oxidation states
struct_with_oxi = bva.get_oxi_state_decorated_structure(struct)
```
## Surface and Interface Analysis
### Surface (Slab) Generation
```python
from pymatgen.core.surface import SlabGenerator, generate_all_slabs
# Generate slabs for a specific Miller index
slabgen = SlabGenerator(
struct,
miller_index=(1, 1, 1),
min_slab_size=10.0, # Minimum slab thickness (Å)
min_vacuum_size=10.0, # Minimum vacuum thickness (Å)
center_slab=True
)
slabs = slabgen.get_slabs()
# Generate all slabs up to a Miller index
all_slabs = generate_all_slabs(
struct,
max_index=2,
min_slab_size=10.0,
min_vacuum_size=10.0
)
```
### Wulff Shape Construction
```python
from pymatgen.analysis.wulff import WulffShape
# Define surface energies (J/m²)
surface_energies = {
(1, 0, 0): 1.0,
(1, 1, 0): 1.1,
(1, 1, 1): 0.9,
}
wulff = WulffShape(struct.lattice, surface_energies, symm_reduce=True)
# Get effective radius and surface area
effective_radius = wulff.effective_radius
surface_area = wulff.surface_area
volume = wulff.volume
# Visualize
wulff.show()
```
### Adsorption Site Finding
```python
from pymatgen.analysis.adsorption import AdsorbateSiteFinder
asf = AdsorbateSiteFinder(slab)
# Find adsorption sites
ads_sites = asf.find_adsorption_sites()
# Returns dictionary: {"ontop": [...], "bridge": [...], "hollow": [...]}
# Generate structures with adsorbates
from pymatgen.core import Molecule
adsorbate = Molecule("O", [[0, 0, 0]])
ads_structs = asf.generate_adsorption_structures(
adsorbate,
repeat=[2, 2, 1], # Supercell to reduce adsorbate coverage
)
```
### Interface Construction
```python
from pymatgen.analysis.interfaces.coherent_interfaces import CoherentInterfaceBuilder
# Build interface between two materials
builder = CoherentInterfaceBuilder(
substrate_structure=substrate,
film_structure=film,
substrate_miller=(0, 0, 1),
film_miller=(1, 1, 1),
)
interfaces = builder.get_interfaces()
```
## Magnetism
### Magnetic Structure Analysis
```python
from pymatgen.analysis.magnetism import CollinearMagneticStructureAnalyzer
analyzer = CollinearMagneticStructureAnalyzer(struct)
# Get magnetic ordering
ordering = analyzer.ordering # e.g., "FM" (ferromagnetic), "AFM", "FiM"
# Get magnetic space group
mag_space_group = analyzer.get_structure_with_spin().get_space_group_info()
```
### Magnetic Ordering Enumeration
```python
from pymatgen.transformations.advanced_transformations import MagOrderingTransformation
# Enumerate possible magnetic orderings
mag_trans = MagOrderingTransformation({"Fe": 5.0}) # Magnetic moment in μB
transformed_structures = mag_trans.apply_transformation(struct, return_ranked_list=True)
```
## Electronic Structure Analysis
### Band Structure Analysis
```python
from pymatgen.electronic_structure.bandstructure import BandStructureSymmLine
from pymatgen.electronic_structure.plotter import BSPlotter
# Read band structure from VASP calculation
from pymatgen.io.vasp import Vasprun
vasprun = Vasprun("vasprun.xml")
bs = vasprun.get_band_structure()
# Get band gap
band_gap = bs.get_band_gap()
# Returns: {'energy': gap_value, 'direct': True/False, 'transition': '...'}
# Check if metal
is_metal = bs.is_metal()
# Get VBM and CBM
vbm = bs.get_vbm()
cbm = bs.get_cbm()
# Plot band structure
plotter = BSPlotter(bs)
plotter.show()
plotter.save_plot("band_structure.png")
```
### Density of States (DOS)
```python
from pymatgen.electronic_structure.dos import CompleteDos
from pymatgen.electronic_structure.plotter import DosPlotter
# Read DOS from VASP calculation
vasprun = Vasprun("vasprun.xml")
dos = vasprun.complete_dos
# Get total DOS
total_dos = dos.densities
# Get projected DOS
pdos = dos.get_element_dos() # By element
site_dos = dos.get_site_dos(struct[0]) # For specific site
spd_dos = dos.get_spd_dos() # By orbital (s, p, d)
# Plot DOS
plotter = DosPlotter()
plotter.add_dos("Total", dos)
plotter.show()
```
### Fermi Surface
```python
from pymatgen.electronic_structure.boltztrap2 import BoltztrapRunner
runner = BoltztrapRunner(struct, nelec=n_electrons)
runner.run()
# Get transport properties at different temperatures
results = runner.get_results()
```
## Diffraction
### X-ray Diffraction (XRD)
```python
from pymatgen.analysis.diffraction.xrd import XRDCalculator
xrd = XRDCalculator()
pattern = xrd.get_pattern(struct, two_theta_range=(0, 90))
# Get peak data
for peak in pattern.hkls:
print(f"2θ = {peak['2theta']:.2f}°, hkl = {peak['hkl']}, I = {peak['intensity']:.1f}")
# Plot pattern
pattern.plot()
```
### Neutron Diffraction
```python
from pymatgen.analysis.diffraction.neutron import NDCalculator
nd = NDCalculator()
pattern = nd.get_pattern(struct)
```
## Elasticity and Mechanical Properties
```python
from pymatgen.analysis.elasticity import ElasticTensor, Stress, Strain
# Create elastic tensor from matrix
elastic_tensor = ElasticTensor([[...]]) # 6x6 or 3x3x3x3 matrix
# Get mechanical properties
bulk_modulus = elastic_tensor.k_voigt # Voigt bulk modulus (GPa)
shear_modulus = elastic_tensor.g_voigt # Shear modulus (GPa)
youngs_modulus = elastic_tensor.y_mod # Young's modulus (GPa)
# Apply strain
strain = Strain([[0.01, 0, 0], [0, 0, 0], [0, 0, 0]])
stress = elastic_tensor.calculate_stress(strain)
```
## Reaction Analysis
### Reaction Computation
```python
from pymatgen.analysis.reaction_calculator import ComputedReaction
reactants = [ComputedEntry("Fe", -8.4), ComputedEntry("O2", -4.9)]
products = [ComputedEntry("Fe2O3", -8.3)]
rxn = ComputedReaction(reactants, products)
# Get balanced equation
balanced_rxn = rxn.normalized_repr # e.g., "2 Fe + 1.5 O2 -> Fe2O3"
# Get reaction energy
energy = rxn.calculated_reaction_energy # eV per formula unit
```
### Reaction Path Finding
```python
from pymatgen.analysis.path_finder import ChgcarPotential, NEBPathfinder
# Read charge density
chgcar_potential = ChgcarPotential.from_file("CHGCAR")
# Find diffusion path
neb_path = NEBPathfinder(
start_struct,
end_struct,
relax_sites=[i for i in range(len(start_struct))],
v=chgcar_potential
)
images = neb_path.images # Interpolated structures for NEB
```
## Molecular Analysis
### Bond Analysis
```python
# Get covalent bonds
bonds = mol.get_covalent_bonds()
for bond in bonds:
print(f"{bond.site1.species_string} - {bond.site2.species_string}: {bond.length:.2f} Å")
```
### Molecule Graph
```python
from pymatgen.analysis.graphs import MoleculeGraph
from pymatgen.analysis.local_env import OpenBabelNN
# Build molecule graph
mg = MoleculeGraph.with_local_env_strategy(mol, OpenBabelNN())
# Get fragments
fragments = mg.get_disconnected_fragments()
# Find rings
rings = mg.find_rings()
```
## Spectroscopy
### X-ray Absorption Spectroscopy (XAS)
```python
from pymatgen.analysis.xas.spectrum import XAS
# Read XAS spectrum
xas = XAS.from_file("xas.dat")
# Normalize and process
xas.normalize()
```
## Additional Analysis Tools
### Grain Boundaries
```python
from pymatgen.analysis.gb.grain import GrainBoundaryGenerator
gb_gen = GrainBoundaryGenerator(struct)
gb_structures = gb_gen.generate_grain_boundaries(
rotation_axis=[0, 0, 1],
rotation_angle=36.87, # degrees
)
```
### Prototypes and Structure Matching
```python
from pymatgen.analysis.prototypes import AflowPrototypeMatcher
matcher = AflowPrototypeMatcher()
prototype = matcher.get_prototypes(struct)
```
## Best Practices
1. **Start simple**: Use basic analysis before advanced methods
2. **Validate results**: Cross-check analysis with multiple methods
3. **Consider symmetry**: Use `SpacegroupAnalyzer` to reduce computational cost
4. **Check convergence**: Ensure input structures are well-converged
5. **Use appropriate methods**: Different analyses have different accuracy/speed tradeoffs
6. **Visualize results**: Use built-in plotters for quick validation
7. **Save intermediate results**: Complex analyses can be time-consuming

View File

@@ -0,0 +1,318 @@
# Pymatgen Core Classes Reference
This reference documents the fundamental classes in `pymatgen.core` that form the foundation for materials analysis.
## Architecture Principles
Pymatgen follows an object-oriented design where elements, sites, and structures are represented as objects. The framework emphasizes periodic boundary conditions for crystal representation while maintaining flexibility for molecular systems.
**Unit Conventions**: All units in pymatgen are typically assumed to be in atomic units:
- Lengths: angstroms (Å)
- Energies: electronvolts (eV)
- Angles: degrees
## Element and Periodic Table
### Element
Represents periodic table elements with comprehensive properties.
**Creation methods:**
```python
from pymatgen.core import Element
# Create from symbol
si = Element("Si")
# Create from atomic number
si = Element.from_Z(14)
# Create from name
si = Element.from_name("silicon")
```
**Key properties:**
- `atomic_mass`: Atomic mass in amu
- `atomic_radius`: Atomic radius in angstroms
- `electronegativity`: Pauling electronegativity
- `ionization_energy`: First ionization energy in eV
- `common_oxidation_states`: List of common oxidation states
- `is_metal`, `is_halogen`, `is_noble_gas`, etc.: Boolean properties
- `X`: Element symbol as string
### Species
Extends Element for charged ions and specific oxidation states.
```python
from pymatgen.core import Species
# Create an Fe2+ ion
fe2 = Species("Fe", 2)
# Or with explicit sign
fe2 = Species("Fe", +2)
```
### DummySpecies
Placeholder atoms for special structural representations (e.g., vacancies).
```python
from pymatgen.core import DummySpecies
vacancy = DummySpecies("X")
```
## Composition
Represents chemical formulas and compositions, enabling chemical analysis and manipulation.
### Creation
```python
from pymatgen.core import Composition
# From string formula
comp = Composition("Fe2O3")
# From dictionary
comp = Composition({"Fe": 2, "O": 3})
# From weight dictionary
comp = Composition.from_weight_dict({"Fe": 111.69, "O": 48.00})
```
### Key methods
- `get_reduced_formula_and_factor()`: Returns reduced formula and multiplication factor
- `oxi_state_guesses()`: Attempts to determine oxidation states
- `replace(replacements_dict)`: Replace elements
- `add_charges_from_oxi_state_guesses()`: Infer and add oxidation states
- `is_element`: Check if composition is a single element
### Key properties
- `weight`: Molecular weight
- `reduced_formula`: Reduced chemical formula
- `hill_formula`: Formula in Hill notation (C, H, then alphabetical)
- `num_atoms`: Total number of atoms
- `chemical_system`: Alphabetically sorted elements (e.g., "Fe-O")
- `element_composition`: Dictionary of element to amount
## Lattice
Defines unit cell geometry for crystal structures.
### Creation
```python
from pymatgen.core import Lattice
# From lattice parameters
lattice = Lattice.from_parameters(a=3.84, b=3.84, c=3.84,
alpha=120, beta=90, gamma=60)
# From matrix (row vectors are lattice vectors)
lattice = Lattice([[3.84, 0, 0],
[0, 3.84, 0],
[0, 0, 3.84]])
# Cubic lattice
lattice = Lattice.cubic(3.84)
# Hexagonal lattice
lattice = Lattice.hexagonal(a=2.95, c=4.68)
```
### Key methods
- `get_niggli_reduced_lattice()`: Returns Niggli-reduced lattice
- `get_distance_and_image(frac_coords1, frac_coords2)`: Distance between fractional coordinates with periodic boundary conditions
- `get_all_distances(frac_coords1, frac_coords2)`: Distances including periodic images
### Key properties
- `volume`: Volume of the unit cell (ų)
- `abc`: Lattice parameters (a, b, c) as tuple
- `angles`: Lattice angles (alpha, beta, gamma) as tuple
- `matrix`: 3x3 matrix of lattice vectors
- `reciprocal_lattice`: Reciprocal lattice object
- `is_orthogonal`: Whether lattice vectors are orthogonal
## Sites
### Site
Represents an atomic position in non-periodic systems.
```python
from pymatgen.core import Site
site = Site("Si", [0.0, 0.0, 0.0]) # Species and Cartesian coordinates
```
### PeriodicSite
Represents an atomic position in a periodic lattice with fractional coordinates.
```python
from pymatgen.core import PeriodicSite
site = PeriodicSite("Si", [0.5, 0.5, 0.5], lattice) # Species, fractional coords, lattice
```
**Key methods:**
- `distance(other_site)`: Distance to another site
- `is_periodic_image(other_site)`: Check if sites are periodic images
**Key properties:**
- `species`: Species or element at the site
- `coords`: Cartesian coordinates
- `frac_coords`: Fractional coordinates (for PeriodicSite)
- `x`, `y`, `z`: Individual Cartesian coordinates
## Structure
Represents a crystal structure as a collection of periodic sites. `Structure` is mutable, while `IStructure` is immutable.
### Creation
```python
from pymatgen.core import Structure, Lattice
# From scratch
coords = [[0, 0, 0], [0.75, 0.5, 0.75]]
lattice = Lattice.from_parameters(a=3.84, b=3.84, c=3.84,
alpha=120, beta=90, gamma=60)
struct = Structure(lattice, ["Si", "Si"], coords)
# From file (automatic format detection)
struct = Structure.from_file("POSCAR")
struct = Structure.from_file("structure.cif")
# From spacegroup
struct = Structure.from_spacegroup("Fm-3m", Lattice.cubic(3.5),
["Si"], [[0, 0, 0]])
```
### File I/O
```python
# Write to file (format inferred from extension)
struct.to(filename="output.cif")
struct.to(filename="POSCAR")
struct.to(filename="structure.xyz")
# Get string representation
cif_string = struct.to(fmt="cif")
poscar_string = struct.to(fmt="poscar")
```
### Key methods
**Structure modification:**
- `append(species, coords)`: Add a site
- `insert(i, species, coords)`: Insert site at index
- `remove_sites(indices)`: Remove sites by index
- `replace(i, species)`: Replace species at index
- `apply_strain(strain)`: Apply strain to structure
- `perturb(distance)`: Randomly perturb atomic positions
- `make_supercell(scaling_matrix)`: Create supercell
- `get_primitive_structure()`: Get primitive cell
**Analysis:**
- `get_distance(i, j)`: Distance between sites i and j
- `get_neighbors(site, r)`: Get neighbors within radius r
- `get_all_neighbors(r)`: Get all neighbors for all sites
- `get_space_group_info()`: Get space group information
- `matches(other_struct)`: Check if structures match
**Interpolation:**
- `interpolate(end_structure, nimages)`: Interpolate between structures
### Key properties
- `lattice`: Lattice object
- `species`: List of species at each site
- `sites`: List of PeriodicSite objects
- `num_sites`: Number of sites
- `volume`: Volume of the structure
- `density`: Density in g/cm³
- `composition`: Composition object
- `formula`: Chemical formula
- `distance_matrix`: Matrix of pairwise distances
## Molecule
Represents non-periodic collections of atoms. `Molecule` is mutable, while `IMolecule` is immutable.
### Creation
```python
from pymatgen.core import Molecule
# From scratch
coords = [[0.00, 0.00, 0.00],
[0.00, 0.00, 1.08]]
mol = Molecule(["C", "O"], coords)
# From file
mol = Molecule.from_file("molecule.xyz")
mol = Molecule.from_file("molecule.mol")
```
### Key methods
- `get_covalent_bonds()`: Returns bonds based on covalent radii
- `get_neighbors(site, r)`: Get neighbors within radius
- `get_zmatrix()`: Get Z-matrix representation
- `get_distance(i, j)`: Distance between sites
- `get_centered_molecule()`: Center molecule at origin
### Key properties
- `species`: List of species
- `sites`: List of Site objects
- `num_sites`: Number of atoms
- `charge`: Total charge of molecule
- `spin_multiplicity`: Spin multiplicity
- `center_of_mass`: Center of mass coordinates
## Serialization
All core objects implement `as_dict()` and `from_dict()` methods for robust JSON/YAML persistence.
```python
# Serialize to dictionary
struct_dict = struct.as_dict()
# Write to JSON
import json
with open("structure.json", "w") as f:
json.dump(struct_dict, f)
# Read from JSON
with open("structure.json", "r") as f:
struct_dict = json.load(f)
struct = Structure.from_dict(struct_dict)
```
This approach addresses limitations of Python pickling and maintains compatibility across pymatgen versions.
## Additional Core Classes
### CovalentBond
Represents bonds in molecules.
**Key properties:**
- `length`: Bond length
- `get_bond_order()`: Returns bond order (single, double, triple)
### Ion
Represents charged ionic species with oxidation states.
```python
from pymatgen.core import Ion
# Create Fe2+ ion
fe2_ion = Ion.from_formula("Fe2+")
```
### Interface
Represents substrate-film combinations for heterojunction analysis.
### GrainBoundary
Represents crystallographic grain boundaries.
### Spectrum
Represents spectroscopic data with methods for normalization and processing.
**Key methods:**
- `normalize(mode="max")`: Normalize spectrum
- `smear(sigma)`: Apply Gaussian smearing
## Best Practices
1. **Immutability**: Use immutable versions (`IStructure`, `IMolecule`) when structures shouldn't be modified
2. **Serialization**: Prefer `as_dict()`/`from_dict()` over pickle for long-term storage
3. **Units**: Always work in atomic units (Å, eV) - conversions are available in `pymatgen.core.units`
4. **File I/O**: Use `from_file()` for automatic format detection
5. **Coordinates**: Pay attention to whether methods expect Cartesian or fractional coordinates

View File

@@ -0,0 +1,469 @@
# Pymatgen I/O and File Format Reference
This reference documents pymatgen's extensive input/output capabilities for reading and writing structural and computational data across 100+ file formats.
## General I/O Philosophy
Pymatgen provides a unified interface for file operations through the `from_file()` and `to()` methods, with automatic format detection based on file extensions.
### Reading Files
```python
from pymatgen.core import Structure, Molecule
# Automatic format detection
struct = Structure.from_file("POSCAR")
struct = Structure.from_file("structure.cif")
mol = Molecule.from_file("molecule.xyz")
# Explicit format specification
struct = Structure.from_file("file.txt", fmt="cif")
```
### Writing Files
```python
# Write to file (format inferred from extension)
struct.to(filename="output.cif")
struct.to(filename="POSCAR")
struct.to(filename="structure.xyz")
# Get string representation without writing
cif_string = struct.to(fmt="cif")
poscar_string = struct.to(fmt="poscar")
```
## Structure File Formats
### CIF (Crystallographic Information File)
Standard format for crystallographic data.
```python
from pymatgen.io.cif import CifParser, CifWriter
# Reading
parser = CifParser("structure.cif")
structure = parser.get_structures()[0] # Returns list of structures
# Writing
writer = CifWriter(struct)
writer.write_file("output.cif")
# Or using convenience methods
struct = Structure.from_file("structure.cif")
struct.to(filename="output.cif")
```
**Key features:**
- Supports symmetry information
- Can contain multiple structures
- Preserves space group and symmetry operations
- Handles partial occupancies
### POSCAR/CONTCAR (VASP)
VASP's structure format.
```python
from pymatgen.io.vasp import Poscar
# Reading
poscar = Poscar.from_file("POSCAR")
structure = poscar.structure
# Writing
poscar = Poscar(struct)
poscar.write_file("POSCAR")
# Or using convenience methods
struct = Structure.from_file("POSCAR")
struct.to(filename="POSCAR")
```
**Key features:**
- Supports selective dynamics
- Can include velocities (XDATCAR format)
- Preserves lattice and coordinate precision
### XYZ
Simple molecular coordinates format.
```python
# For molecules
mol = Molecule.from_file("molecule.xyz")
mol.to(filename="output.xyz")
# For structures (Cartesian coordinates)
struct.to(filename="structure.xyz")
```
### PDB (Protein Data Bank)
Common format for biomolecules.
```python
mol = Molecule.from_file("protein.pdb")
mol.to(filename="output.pdb")
```
### JSON/YAML
Serialization via dictionaries.
```python
import json
import yaml
# JSON
with open("structure.json", "w") as f:
json.dump(struct.as_dict(), f)
with open("structure.json", "r") as f:
struct = Structure.from_dict(json.load(f))
# YAML
with open("structure.yaml", "w") as f:
yaml.dump(struct.as_dict(), f)
with open("structure.yaml", "r") as f:
struct = Structure.from_dict(yaml.safe_load(f))
```
## Electronic Structure Code I/O
### VASP
The most comprehensive integration in pymatgen.
#### Input Files
```python
from pymatgen.io.vasp.inputs import Incar, Poscar, Potcar, Kpoints, VaspInput
# INCAR (calculation parameters)
incar = Incar.from_file("INCAR")
incar = Incar({"ENCUT": 520, "ISMEAR": 0, "SIGMA": 0.05})
incar.write_file("INCAR")
# KPOINTS (k-point mesh)
from pymatgen.io.vasp.inputs import Kpoints
kpoints = Kpoints.automatic(20) # 20x20x20 Gamma-centered mesh
kpoints = Kpoints.automatic_density(struct, 1000) # By density
kpoints.write_file("KPOINTS")
# POTCAR (pseudopotentials)
potcar = Potcar(["Fe_pv", "O"]) # Specify functional variants
# Complete input set
vasp_input = VaspInput(incar, kpoints, poscar, potcar)
vasp_input.write_input("./vasp_calc")
```
#### Output Files
```python
from pymatgen.io.vasp.outputs import Vasprun, Outcar, Oszicar, Eigenval
# vasprun.xml (comprehensive output)
vasprun = Vasprun("vasprun.xml")
final_structure = vasprun.final_structure
energy = vasprun.final_energy
band_structure = vasprun.get_band_structure()
dos = vasprun.complete_dos
# OUTCAR
outcar = Outcar("OUTCAR")
magnetization = outcar.total_mag
elastic_tensor = outcar.elastic_tensor
# OSZICAR (convergence information)
oszicar = Oszicar("OSZICAR")
```
#### Input Sets
Pymatgen provides pre-configured input sets for common calculations:
```python
from pymatgen.io.vasp.sets import (
MPRelaxSet, # Materials Project relaxation
MPStaticSet, # Static calculation
MPNonSCFSet, # Non-self-consistent (band structure)
MPSOCSet, # Spin-orbit coupling
MPHSERelaxSet, # HSE06 hybrid functional
)
# Create input set
relax = MPRelaxSet(struct)
relax.write_input("./relax_calc")
# Customize parameters
static = MPStaticSet(struct, user_incar_settings={"ENCUT": 600})
static.write_input("./static_calc")
```
### Gaussian
Quantum chemistry package integration.
```python
from pymatgen.io.gaussian import GaussianInput, GaussianOutput
# Input
gin = GaussianInput(
mol,
charge=0,
spin_multiplicity=1,
functional="B3LYP",
basis_set="6-31G(d)",
route_parameters={"Opt": None, "Freq": None}
)
gin.write_file("input.gjf")
# Output
gout = GaussianOutput("output.log")
final_mol = gout.final_structure
energy = gout.final_energy
frequencies = gout.frequencies
```
### LAMMPS
Classical molecular dynamics.
```python
from pymatgen.io.lammps.data import LammpsData
from pymatgen.io.lammps.inputs import LammpsInputFile
# Structure to LAMMPS data file
lammps_data = LammpsData.from_structure(struct)
lammps_data.write_file("data.lammps")
# LAMMPS input script
lammps_input = LammpsInputFile.from_file("in.lammps")
```
### Quantum ESPRESSO
```python
from pymatgen.io.pwscf import PWInput, PWOutput
# Input
pwin = PWInput(
struct,
control={"calculation": "scf"},
system={"ecutwfc": 50, "ecutrho": 400},
electrons={"conv_thr": 1e-8}
)
pwin.write_file("pw.in")
# Output
pwout = PWOutput("pw.out")
final_structure = pwout.final_structure
energy = pwout.final_energy
```
### ABINIT
```python
from pymatgen.io.abinit import AbinitInput
abin = AbinitInput(struct, pseudos)
abin.set_vars(ecut=10, nband=10)
abin.write("abinit.in")
```
### CP2K
```python
from pymatgen.io.cp2k.inputs import Cp2kInput
from pymatgen.io.cp2k.outputs import Cp2kOutput
# Input
cp2k_input = Cp2kInput.from_file("cp2k.inp")
# Output
cp2k_output = Cp2kOutput("cp2k.out")
```
### FEFF (XAS/XANES)
```python
from pymatgen.io.feff import FeffInput
feff_input = FeffInput(struct, absorbing_atom="Fe")
feff_input.write_file("feff.inp")
```
### LMTO (Stuttgart TB-LMTO-ASA)
```python
from pymatgen.io.lmto import LMTOCtrl
ctrl = LMTOCtrl.from_file("CTRL")
ctrl.structure
```
### Q-Chem
```python
from pymatgen.io.qchem.inputs import QCInput
from pymatgen.io.qchem.outputs import QCOutput
# Input
qc_input = QCInput(
mol,
rem={"method": "B3LYP", "basis": "6-31G*", "job_type": "opt"}
)
qc_input.write_file("mol.qin")
# Output
qc_output = QCOutput("mol.qout")
```
### Exciting
```python
from pymatgen.io.exciting import ExcitingInput
exc_input = ExcitingInput(struct)
exc_input.write_file("input.xml")
```
### ATAT (Alloy Theoretic Automated Toolkit)
```python
from pymatgen.io.atat import Mcsqs
mcsqs = Mcsqs(struct)
mcsqs.write_input(".")
```
## Special Purpose Formats
### Phonopy
```python
from pymatgen.io.phonopy import get_phonopy_structure, get_pmg_structure
# Convert to phonopy structure
phonopy_struct = get_phonopy_structure(struct)
# Convert from phonopy
struct = get_pmg_structure(phonopy_struct)
```
### ASE (Atomic Simulation Environment)
```python
from pymatgen.io.ase import AseAtomsAdaptor
adaptor = AseAtomsAdaptor()
# Pymatgen to ASE
atoms = adaptor.get_atoms(struct)
# ASE to Pymatgen
struct = adaptor.get_structure(atoms)
```
### Zeo++ (Porous Materials)
```python
from pymatgen.io.zeopp import get_voronoi_nodes, get_high_accuracy_voronoi_nodes
# Analyze pore structure
vor_nodes = get_voronoi_nodes(struct)
```
### BabelMolAdaptor (OpenBabel)
```python
from pymatgen.io.babel import BabelMolAdaptor
adaptor = BabelMolAdaptor(mol)
# Convert to different formats
pdb_str = adaptor.pdbstring
sdf_str = adaptor.write_file("mol.sdf", file_format="sdf")
# Generate 3D coordinates
adaptor.add_hydrogen()
adaptor.make3d()
```
## Alchemy and Transformation I/O
### TransformedStructure
Structures that track their transformation history.
```python
from pymatgen.alchemy.materials import TransformedStructure
from pymatgen.transformations.standard_transformations import (
SupercellTransformation,
SubstitutionTransformation
)
# Create transformed structure
ts = TransformedStructure(struct, [])
ts.append_transformation(SupercellTransformation([[2,0,0],[0,2,0],[0,0,2]]))
ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"}))
# Write with history
ts.write_vasp_input("./calc_dir")
# Read from SNL (Structure Notebook Language)
ts = TransformedStructure.from_snl(snl)
```
## Batch Operations
### CifTransmuter
Process multiple CIF files.
```python
from pymatgen.alchemy.transmuters import CifTransmuter
transmuter = CifTransmuter.from_filenames(
["structure1.cif", "structure2.cif"],
[SupercellTransformation([[2,0,0],[0,2,0],[0,0,2]])]
)
# Write all structures
transmuter.write_vasp_input("./batch_calc")
```
### PoscarTransmuter
Similar for POSCAR files.
```python
from pymatgen.alchemy.transmuters import PoscarTransmuter
transmuter = PoscarTransmuter.from_filenames(
["POSCAR1", "POSCAR2"],
[transformation1, transformation2]
)
```
## Best Practices
1. **Automatic format detection**: Use `from_file()` and `to()` methods whenever possible
2. **Error handling**: Always wrap file I/O in try-except blocks
3. **Format-specific parsers**: Use specialized parsers (e.g., `Vasprun`) for detailed output analysis
4. **Input sets**: Prefer pre-configured input sets over manual parameter specification
5. **Serialization**: Use JSON/YAML for long-term storage and version control
6. **Batch processing**: Use transmuters for applying transformations to multiple structures
## Supported Format Summary
### Structure formats:
CIF, POSCAR/CONTCAR, XYZ, PDB, XSF, PWMAT, Res, CSSR, JSON, YAML
### Electronic structure codes:
VASP, Gaussian, LAMMPS, Quantum ESPRESSO, ABINIT, CP2K, FEFF, Q-Chem, LMTO, Exciting, NWChem, AIMS, Crystallographic data formats
### Molecular formats:
XYZ, PDB, MOL, SDF, PQR, via OpenBabel (many additional formats)
### Special purpose:
Phonopy, ASE, Zeo++, Lobster, BoltzTraP

View File

@@ -0,0 +1,517 @@
# Materials Project API Reference
This reference documents how to access and use the Materials Project database through pymatgen's API integration.
## Overview
The Materials Project is a comprehensive database of computed materials properties, containing data on hundreds of thousands of inorganic crystals and molecules. The API provides programmatic access to this data through the `MPRester` client.
## Installation and Setup
The Materials Project API client is now in a separate package:
```bash
pip install mp-api
```
### Getting an API Key
1. Visit https://next-gen.materialsproject.org/
2. Create an account or log in
3. Navigate to your dashboard/settings
4. Generate an API key
5. Store it as an environment variable:
```bash
export MP_API_KEY="your_api_key_here"
```
Or add to your shell configuration file (~/.bashrc, ~/.zshrc, etc.)
## Basic Usage
### Initialization
```python
from mp_api.client import MPRester
# Using environment variable (recommended)
with MPRester() as mpr:
# Perform queries
pass
# Or explicitly pass API key
with MPRester("your_api_key_here") as mpr:
# Perform queries
pass
```
**Important**: Always use the `with` context manager to ensure sessions are properly closed.
## Querying Materials Data
### Search by Formula
```python
with MPRester() as mpr:
# Get all materials with formula
materials = mpr.materials.summary.search(formula="Fe2O3")
for mat in materials:
print(f"Material ID: {mat.material_id}")
print(f"Formula: {mat.formula_pretty}")
print(f"Energy above hull: {mat.energy_above_hull} eV/atom")
print(f"Band gap: {mat.band_gap} eV")
print()
```
### Search by Material ID
```python
with MPRester() as mpr:
# Get specific material
material = mpr.materials.summary.search(material_ids=["mp-149"])[0]
print(f"Formula: {material.formula_pretty}")
print(f"Space group: {material.symmetry.symbol}")
print(f"Density: {material.density} g/cm³")
```
### Search by Chemical System
```python
with MPRester() as mpr:
# Get all materials in Fe-O system
materials = mpr.materials.summary.search(chemsys="Fe-O")
# Get materials in ternary system
materials = mpr.materials.summary.search(chemsys="Li-Fe-O")
```
### Search by Elements
```python
with MPRester() as mpr:
# Materials containing Fe and O
materials = mpr.materials.summary.search(elements=["Fe", "O"])
# Materials containing ONLY Fe and O (excluding others)
materials = mpr.materials.summary.search(
elements=["Fe", "O"],
exclude_elements=True
)
```
## Getting Structures
### Structure from Material ID
```python
with MPRester() as mpr:
# Get structure
structure = mpr.get_structure_by_material_id("mp-149")
# Get multiple structures
structures = mpr.get_structures(["mp-149", "mp-510", "mp-19017"])
```
### All Structures for a Formula
```python
with MPRester() as mpr:
# Get all Fe2O3 structures
materials = mpr.materials.summary.search(formula="Fe2O3")
for mat in materials:
structure = mpr.get_structure_by_material_id(mat.material_id)
print(f"{mat.material_id}: {structure.get_space_group_info()}")
```
## Advanced Queries
### Property Filtering
```python
with MPRester() as mpr:
# Materials with specific property ranges
materials = mpr.materials.summary.search(
chemsys="Li-Fe-O",
energy_above_hull=(0, 0.05), # Stable or near-stable
band_gap=(1.0, 3.0), # Semiconducting
)
# Magnetic materials
materials = mpr.materials.summary.search(
elements=["Fe"],
is_magnetic=True
)
# Metals only
materials = mpr.materials.summary.search(
chemsys="Fe-Ni",
is_metal=True
)
```
### Sorting and Limiting
```python
with MPRester() as mpr:
# Get most stable materials
materials = mpr.materials.summary.search(
chemsys="Li-Fe-O",
sort_fields=["energy_above_hull"],
num_chunks=1,
chunk_size=10 # Limit to 10 results
)
```
## Electronic Structure Data
### Band Structure
```python
with MPRester() as mpr:
# Get band structure
bs = mpr.get_bandstructure_by_material_id("mp-149")
# Analyze band structure
if bs:
print(f"Band gap: {bs.get_band_gap()}")
print(f"Is metal: {bs.is_metal()}")
print(f"Direct gap: {bs.get_band_gap()['direct']}")
# Plot
from pymatgen.electronic_structure.plotter import BSPlotter
plotter = BSPlotter(bs)
plotter.show()
```
### Density of States
```python
with MPRester() as mpr:
# Get DOS
dos = mpr.get_dos_by_material_id("mp-149")
if dos:
# Get band gap from DOS
gap = dos.get_gap()
print(f"Band gap from DOS: {gap} eV")
# Plot DOS
from pymatgen.electronic_structure.plotter import DosPlotter
plotter = DosPlotter()
plotter.add_dos("Total DOS", dos)
plotter.show()
```
### Fermi Surface
```python
with MPRester() as mpr:
# Get electronic structure data for Fermi surface
bs = mpr.get_bandstructure_by_material_id("mp-149", line_mode=False)
```
## Thermodynamic Data
### Phase Diagram Construction
```python
from pymatgen.analysis.phase_diagram import PhaseDiagram, PDPlotter
with MPRester() as mpr:
# Get entries for phase diagram
entries = mpr.get_entries_in_chemsys("Li-Fe-O")
# Build phase diagram
pd = PhaseDiagram(entries)
# Plot
plotter = PDPlotter(pd)
plotter.show()
```
### Pourbaix Diagram
```python
from pymatgen.analysis.pourbaix_diagram import PourbaixDiagram, PourbaixPlotter
with MPRester() as mpr:
# Get entries for Pourbaix diagram
entries = mpr.get_pourbaix_entries(["Fe"])
# Build Pourbaix diagram
pb = PourbaixDiagram(entries)
# Plot
plotter = PourbaixPlotter(pb)
plotter.show()
```
### Formation Energy
```python
with MPRester() as mpr:
materials = mpr.materials.summary.search(material_ids=["mp-149"])
for mat in materials:
print(f"Formation energy: {mat.formation_energy_per_atom} eV/atom")
print(f"Energy above hull: {mat.energy_above_hull} eV/atom")
```
## Elasticity and Mechanical Properties
```python
with MPRester() as mpr:
# Search for materials with elastic data
materials = mpr.materials.elasticity.search(
chemsys="Fe-O",
bulk_modulus_vrh=(100, 300) # GPa
)
for mat in materials:
print(f"{mat.material_id}: K = {mat.bulk_modulus_vrh} GPa")
```
## Dielectric Properties
```python
with MPRester() as mpr:
# Get dielectric data
materials = mpr.materials.dielectric.search(
material_ids=["mp-149"]
)
for mat in materials:
print(f"Dielectric constant: {mat.e_electronic}")
print(f"Refractive index: {mat.n}")
```
## Piezoelectric Properties
```python
with MPRester() as mpr:
# Get piezoelectric materials
materials = mpr.materials.piezoelectric.search(
piezoelectric_modulus=(1, 100)
)
```
## Surface Properties
```python
with MPRester() as mpr:
# Get surface data
surfaces = mpr.materials.surface_properties.search(
material_ids=["mp-149"]
)
```
## Molecule Data (For Molecular Materials)
```python
with MPRester() as mpr:
# Search molecules
molecules = mpr.molecules.summary.search(
formula="H2O"
)
for mol in molecules:
print(f"Molecule ID: {mol.molecule_id}")
print(f"Formula: {mol.formula_pretty}")
```
## Bulk Data Download
### Download All Data for Materials
```python
with MPRester() as mpr:
# Get comprehensive data
materials = mpr.materials.summary.search(
material_ids=["mp-149"],
fields=[
"material_id",
"formula_pretty",
"structure",
"energy_above_hull",
"band_gap",
"density",
"symmetry",
"elasticity",
"magnetic_ordering"
]
)
```
## Provenance and Calculation Details
```python
with MPRester() as mpr:
# Get calculation details
materials = mpr.materials.summary.search(
material_ids=["mp-149"],
fields=["material_id", "origins"]
)
for mat in materials:
print(f"Origins: {mat.origins}")
```
## Working with Entries
### ComputedEntry for Thermodynamic Analysis
```python
with MPRester() as mpr:
# Get entries (includes energy and composition)
entries = mpr.get_entries_in_chemsys("Li-Fe-O")
# Entries can be used directly in phase diagram analysis
from pymatgen.analysis.phase_diagram import PhaseDiagram
pd = PhaseDiagram(entries)
# Check stability
for entry in entries[:5]:
e_above_hull = pd.get_e_above_hull(entry)
print(f"{entry.composition.reduced_formula}: {e_above_hull:.3f} eV/atom")
```
## Rate Limiting and Best Practices
### Rate Limits
The Materials Project API has rate limits to ensure fair usage:
- Be mindful of request frequency
- Use batch queries when possible
- Cache results locally for repeated analysis
### Efficient Querying
```python
# Bad: Multiple separate queries
with MPRester() as mpr:
for mp_id in ["mp-149", "mp-510", "mp-19017"]:
struct = mpr.get_structure_by_material_id(mp_id) # 3 API calls
# Good: Single batch query
with MPRester() as mpr:
structs = mpr.get_structures(["mp-149", "mp-510", "mp-19017"]) # 1 API call
```
### Caching Results
```python
import json
# Save results for later use
with MPRester() as mpr:
materials = mpr.materials.summary.search(chemsys="Li-Fe-O")
# Save to file
with open("li_fe_o_materials.json", "w") as f:
json.dump([mat.dict() for mat in materials], f)
# Load cached results
with open("li_fe_o_materials.json", "r") as f:
cached_data = json.load(f)
```
## Error Handling
```python
from mp_api.client.core.client import MPRestError
try:
with MPRester() as mpr:
materials = mpr.materials.summary.search(material_ids=["invalid-id"])
except MPRestError as e:
print(f"API Error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
```
## Common Use Cases
### Finding Stable Compounds
```python
with MPRester() as mpr:
# Get all stable compounds in a chemical system
materials = mpr.materials.summary.search(
chemsys="Li-Fe-O",
energy_above_hull=(0, 0.001) # Essentially on convex hull
)
print(f"Found {len(materials)} stable compounds")
for mat in materials:
print(f" {mat.formula_pretty} ({mat.material_id})")
```
### Battery Material Screening
```python
with MPRester() as mpr:
# Screen for potential cathode materials
materials = mpr.materials.summary.search(
elements=["Li"], # Must contain Li
energy_above_hull=(0, 0.05), # Near stable
band_gap=(0, 0.5), # Metallic or small gap
)
print(f"Found {len(materials)} potential cathode materials")
```
### Finding Materials with Specific Crystal Structure
```python
with MPRester() as mpr:
# Find materials with specific space group
materials = mpr.materials.summary.search(
chemsys="Fe-O",
spacegroup_number=167 # R-3c (corundum structure)
)
```
## Integration with Other Pymatgen Features
All data retrieved from the Materials Project can be directly used with pymatgen's analysis tools:
```python
with MPRester() as mpr:
# Get structure
struct = mpr.get_structure_by_material_id("mp-149")
# Use with pymatgen analysis
from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
sga = SpacegroupAnalyzer(struct)
# Generate surfaces
from pymatgen.core.surface import SlabGenerator
slabgen = SlabGenerator(struct, (1,0,0), 10, 10)
slabs = slabgen.get_slabs()
# Phase diagram analysis
entries = mpr.get_entries_in_chemsys(struct.composition.chemical_system)
from pymatgen.analysis.phase_diagram import PhaseDiagram
pd = PhaseDiagram(entries)
```
## Additional Resources
- **API Documentation**: https://docs.materialsproject.org/
- **Materials Project Website**: https://next-gen.materialsproject.org/
- **GitHub**: https://github.com/materialsproject/api
- **Forum**: https://matsci.org/
## Best Practices Summary
1. **Always use context manager**: Use `with MPRester() as mpr:`
2. **Store API key as environment variable**: Never hardcode API keys
3. **Batch queries**: Request multiple items at once when possible
4. **Cache results**: Save frequently used data locally
5. **Handle errors**: Wrap API calls in try-except blocks
6. **Be specific**: Use filters to limit results and reduce data transfer
7. **Check data availability**: Not all properties are available for all materials

View File

@@ -0,0 +1,591 @@
# Pymatgen Transformations and Common Workflows
This reference documents pymatgen's transformation framework and provides recipes for common materials science workflows.
## Transformation Framework
Transformations provide a systematic way to modify structures while tracking the history of modifications.
### Standard Transformations
Located in `pymatgen.transformations.standard_transformations`.
#### SupercellTransformation
Create supercells with arbitrary scaling matrices.
```python
from pymatgen.transformations.standard_transformations import SupercellTransformation
# Simple 2x2x2 supercell
trans = SupercellTransformation([[2,0,0], [0,2,0], [0,0,2]])
new_struct = trans.apply_transformation(struct)
# Non-orthogonal supercell
trans = SupercellTransformation([[2,1,0], [0,2,0], [0,0,2]])
new_struct = trans.apply_transformation(struct)
```
#### SubstitutionTransformation
Replace species in a structure.
```python
from pymatgen.transformations.standard_transformations import SubstitutionTransformation
# Replace all Fe with Mn
trans = SubstitutionTransformation({"Fe": "Mn"})
new_struct = trans.apply_transformation(struct)
# Partial substitution (50% Fe -> Mn)
trans = SubstitutionTransformation({"Fe": {"Mn": 0.5, "Fe": 0.5}})
new_struct = trans.apply_transformation(struct)
```
#### RemoveSpeciesTransformation
Remove specific species from structure.
```python
from pymatgen.transformations.standard_transformations import RemoveSpeciesTransformation
trans = RemoveSpeciesTransformation(["H"]) # Remove all hydrogen
new_struct = trans.apply_transformation(struct)
```
#### OrderDisorderedStructureTransformation
Order disordered structures with partial occupancies.
```python
from pymatgen.transformations.standard_transformations import OrderDisorderedStructureTransformation
trans = OrderDisorderedStructureTransformation()
new_struct = trans.apply_transformation(disordered_struct)
```
#### PrimitiveCellTransformation
Convert to primitive cell.
```python
from pymatgen.transformations.standard_transformations import PrimitiveCellTransformation
trans = PrimitiveCellTransformation()
primitive_struct = trans.apply_transformation(struct)
```
#### ConventionalCellTransformation
Convert to conventional cell.
```python
from pymatgen.transformations.standard_transformations import ConventionalCellTransformation
trans = ConventionalCellTransformation()
conventional_struct = trans.apply_transformation(struct)
```
#### RotationTransformation
Rotate structure.
```python
from pymatgen.transformations.standard_transformations import RotationTransformation
# Rotate by axis and angle
trans = RotationTransformation([0, 0, 1], 45) # 45° around z-axis
new_struct = trans.apply_transformation(struct)
```
#### ScaleToRelaxedTransformation
Scale lattice to match a relaxed structure.
```python
from pymatgen.transformations.standard_transformations import ScaleToRelaxedTransformation
trans = ScaleToRelaxedTransformation(relaxed_struct)
scaled_struct = trans.apply_transformation(unrelaxed_struct)
```
### Advanced Transformations
Located in `pymatgen.transformations.advanced_transformations`.
#### EnumerateStructureTransformation
Enumerate all symmetrically distinct ordered structures from a disordered structure.
```python
from pymatgen.transformations.advanced_transformations import EnumerateStructureTransformation
# Enumerate structures up to max 8 atoms per unit cell
trans = EnumerateStructureTransformation(max_cell_size=8)
structures = trans.apply_transformation(struct, return_ranked_list=True)
# Returns list of ranked structures
for s in structures[:5]: # Top 5 structures
print(f"Energy: {s['energy']}, Structure: {s['structure']}")
```
#### MagOrderingTransformation
Enumerate magnetic orderings.
```python
from pymatgen.transformations.advanced_transformations import MagOrderingTransformation
# Specify magnetic moments for each species
trans = MagOrderingTransformation({"Fe": 5.0, "Ni": 2.0})
mag_structures = trans.apply_transformation(struct, return_ranked_list=True)
```
#### DopingTransformation
Systematically dope a structure.
```python
from pymatgen.transformations.advanced_transformations import DopingTransformation
# Replace 12.5% of Fe sites with Mn
trans = DopingTransformation("Mn", min_length=10)
doped_structs = trans.apply_transformation(struct, return_ranked_list=True)
```
#### ChargeBalanceTransformation
Balance charge in a structure by oxidation state manipulation.
```python
from pymatgen.transformations.advanced_transformations import ChargeBalanceTransformation
trans = ChargeBalanceTransformation("Li")
charged_struct = trans.apply_transformation(struct)
```
#### SlabTransformation
Generate surface slabs.
```python
from pymatgen.transformations.advanced_transformations import SlabTransformation
trans = SlabTransformation(
miller_index=[1, 0, 0],
min_slab_size=10,
min_vacuum_size=10,
shift=0,
lll_reduce=True
)
slab = trans.apply_transformation(struct)
```
### Chaining Transformations
```python
from pymatgen.alchemy.materials import TransformedStructure
# Create transformed structure that tracks history
ts = TransformedStructure(struct, [])
# Apply multiple transformations
ts.append_transformation(SupercellTransformation([[2,0,0],[0,2,0],[0,0,2]]))
ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"}))
ts.append_transformation(PrimitiveCellTransformation())
# Get final structure
final_struct = ts.final_structure
# View transformation history
print(ts.history)
```
## Common Workflows
### Workflow 1: High-Throughput Structure Generation
Generate multiple structures for screening studies.
```python
from pymatgen.core import Structure
from pymatgen.transformations.standard_transformations import (
SubstitutionTransformation,
SupercellTransformation
)
from pymatgen.io.vasp.sets import MPRelaxSet
# Starting structure
base_struct = Structure.from_file("POSCAR")
# Define substitutions
dopants = ["Mn", "Co", "Ni", "Cu"]
structures = {}
for dopant in dopants:
# Create substituted structure
trans = SubstitutionTransformation({"Fe": dopant})
new_struct = trans.apply_transformation(base_struct)
# Generate VASP inputs
vasp_input = MPRelaxSet(new_struct)
vasp_input.write_input(f"./calcs/Fe_{dopant}")
structures[dopant] = new_struct
print(f"Generated {len(structures)} structures")
```
### Workflow 2: Phase Diagram Construction
Build and analyze phase diagrams from Materials Project data.
```python
from mp_api.client import MPRester
from pymatgen.analysis.phase_diagram import PhaseDiagram, PDPlotter
from pymatgen.core import Composition
# Get data from Materials Project
with MPRester() as mpr:
entries = mpr.get_entries_in_chemsys("Li-Fe-O")
# Build phase diagram
pd = PhaseDiagram(entries)
# Analyze specific composition
comp = Composition("LiFeO2")
e_above_hull = pd.get_e_above_hull(entries[0])
# Get decomposition products
decomp = pd.get_decomposition(comp)
print(f"Decomposition: {decomp}")
# Visualize
plotter = PDPlotter(pd)
plotter.show()
```
### Workflow 3: Surface Energy Calculation
Calculate surface energies from slab calculations.
```python
from pymatgen.core.surface import SlabGenerator, generate_all_slabs
from pymatgen.io.vasp.sets import MPStaticSet, MPRelaxSet
from pymatgen.core import Structure
# Read bulk structure
bulk = Structure.from_file("bulk_POSCAR")
# Get bulk energy (from previous calculation)
from pymatgen.io.vasp import Vasprun
bulk_vasprun = Vasprun("bulk/vasprun.xml")
bulk_energy_per_atom = bulk_vasprun.final_energy / len(bulk)
# Generate slabs
miller_indices = [(1,0,0), (1,1,0), (1,1,1)]
surface_energies = {}
for miller in miller_indices:
slabgen = SlabGenerator(
bulk,
miller_index=miller,
min_slab_size=10,
min_vacuum_size=15,
center_slab=True
)
slab = slabgen.get_slabs()[0]
# Write VASP input for slab
relax = MPRelaxSet(slab)
relax.write_input(f"./slab_{miller[0]}{miller[1]}{miller[2]}")
# After calculation, compute surface energy:
# slab_vasprun = Vasprun(f"slab_{miller[0]}{miller[1]}{miller[2]}/vasprun.xml")
# slab_energy = slab_vasprun.final_energy
# n_atoms = len(slab)
# area = slab.surface_area # in Ų
#
# # Surface energy (J/m²)
# surf_energy = (slab_energy - n_atoms * bulk_energy_per_atom) / (2 * area)
# surf_energy *= 16.021766 # Convert eV/Ų to J/m²
# surface_energies[miller] = surf_energy
print(f"Set up calculations for {len(miller_indices)} surfaces")
```
### Workflow 4: Band Structure Calculation
Complete workflow for band structure calculations.
```python
from pymatgen.core import Structure
from pymatgen.io.vasp.sets import MPRelaxSet, MPStaticSet, MPNonSCFSet
from pymatgen.symmetry.bandstructure import HighSymmKpath
# Step 1: Relaxation
struct = Structure.from_file("initial_POSCAR")
relax = MPRelaxSet(struct)
relax.write_input("./1_relax")
# After relaxation, read structure
relaxed_struct = Structure.from_file("1_relax/CONTCAR")
# Step 2: Static calculation
static = MPStaticSet(relaxed_struct)
static.write_input("./2_static")
# Step 3: Band structure (non-self-consistent)
kpath = HighSymmKpath(relaxed_struct)
nscf = MPNonSCFSet(relaxed_struct, mode="line") # Band structure mode
nscf.write_input("./3_bandstructure")
# After calculations, analyze
from pymatgen.io.vasp import Vasprun
from pymatgen.electronic_structure.plotter import BSPlotter
vasprun = Vasprun("3_bandstructure/vasprun.xml")
bs = vasprun.get_band_structure(line_mode=True)
print(f"Band gap: {bs.get_band_gap()}")
plotter = BSPlotter(bs)
plotter.save_plot("band_structure.png")
```
### Workflow 5: Molecular Dynamics Setup
Set up and analyze molecular dynamics simulations.
```python
from pymatgen.core import Structure
from pymatgen.io.vasp.sets import MVLRelaxSet
from pymatgen.io.vasp.inputs import Incar
# Read structure
struct = Structure.from_file("POSCAR")
# Create 2x2x2 supercell for MD
from pymatgen.transformations.standard_transformations import SupercellTransformation
trans = SupercellTransformation([[2,0,0],[0,2,0],[0,0,2]])
supercell = trans.apply_transformation(struct)
# Set up VASP input
md_input = MVLRelaxSet(supercell)
# Modify INCAR for MD
incar = md_input.incar
incar.update({
"IBRION": 0, # Molecular dynamics
"NSW": 1000, # Number of steps
"POTIM": 2, # Time step (fs)
"TEBEG": 300, # Initial temperature (K)
"TEEND": 300, # Final temperature (K)
"SMASS": 0, # NVT ensemble
"MDALGO": 2, # Nose-Hoover thermostat
})
md_input.incar = incar
md_input.write_input("./md_calc")
```
### Workflow 6: Diffusion Analysis
Analyze ion diffusion from AIMD trajectories.
```python
from pymatgen.io.vasp import Xdatcar
from pymatgen.analysis.diffusion.analyzer import DiffusionAnalyzer
# Read trajectory from XDATCAR
xdatcar = Xdatcar("XDATCAR")
structures = xdatcar.structures
# Analyze diffusion for specific species (e.g., Li)
analyzer = DiffusionAnalyzer.from_structures(
structures,
specie="Li",
temperature=300, # K
time_step=2, # fs
step_skip=10 # Skip initial equilibration
)
# Get diffusivity
diffusivity = analyzer.diffusivity # cm²/s
conductivity = analyzer.conductivity # mS/cm
# Get mean squared displacement
msd = analyzer.msd
# Plot MSD
analyzer.plot_msd()
print(f"Diffusivity: {diffusivity:.2e} cm²/s")
print(f"Conductivity: {conductivity:.2e} mS/cm")
```
### Workflow 7: Structure Prediction and Enumeration
Predict and enumerate possible structures.
```python
from pymatgen.core import Structure, Lattice
from pymatgen.transformations.advanced_transformations import (
EnumerateStructureTransformation,
SubstitutionTransformation
)
# Start with a known structure type (e.g., rocksalt)
lattice = Lattice.cubic(4.2)
struct = Structure.from_spacegroup("Fm-3m", lattice, ["Li", "O"], [[0,0,0], [0.5,0.5,0.5]])
# Create disordered structure
from pymatgen.core import Species
species_on_site = {Species("Li"): 0.5, Species("Na"): 0.5}
struct[0] = species_on_site # Mixed occupancy on Li site
# Enumerate all ordered structures
trans = EnumerateStructureTransformation(max_cell_size=4)
ordered_structs = trans.apply_transformation(struct, return_ranked_list=True)
print(f"Found {len(ordered_structs)} distinct ordered structures")
# Write all structures
for i, s_dict in enumerate(ordered_structs[:10]): # Top 10
s_dict['structure'].to(filename=f"ordered_struct_{i}.cif")
```
### Workflow 8: Elastic Constant Calculation
Calculate elastic constants using the stress-strain method.
```python
from pymatgen.core import Structure
from pymatgen.transformations.standard_transformations import DeformStructureTransformation
from pymatgen.io.vasp.sets import MPStaticSet
# Read equilibrium structure
struct = Structure.from_file("relaxed_POSCAR")
# Generate deformed structures
strains = [0.00, 0.01, 0.02, -0.01, -0.02] # Applied strains
deformation_sets = []
for strain in strains:
# Apply strain in different directions
trans = DeformStructureTransformation([[1+strain, 0, 0], [0, 1, 0], [0, 0, 1]])
deformed = trans.apply_transformation(struct)
# Set up VASP calculation
static = MPStaticSet(deformed)
static.write_input(f"./strain_{strain:.2f}")
# After calculations, fit stress vs strain to get elastic constants
# from pymatgen.analysis.elasticity import ElasticTensor
# ... (collect stress tensors from OUTCAR)
# elastic_tensor = ElasticTensor.from_stress_list(stress_list)
```
### Workflow 9: Adsorption Energy Calculation
Calculate adsorption energies on surfaces.
```python
from pymatgen.core import Structure, Molecule
from pymatgen.core.surface import SlabGenerator
from pymatgen.analysis.adsorption import AdsorbateSiteFinder
from pymatgen.io.vasp.sets import MPRelaxSet
# Generate slab
bulk = Structure.from_file("bulk_POSCAR")
slabgen = SlabGenerator(bulk, (1,1,1), 10, 10)
slab = slabgen.get_slabs()[0]
# Find adsorption sites
asf = AdsorbateSiteFinder(slab)
ads_sites = asf.find_adsorption_sites()
# Create adsorbate
adsorbate = Molecule("O", [[0, 0, 0]])
# Generate structures with adsorbate
ads_structs = asf.add_adsorbate(adsorbate, ads_sites["ontop"][0])
# Set up calculations
relax_slab = MPRelaxSet(slab)
relax_slab.write_input("./slab")
relax_ads = MPRelaxSet(ads_structs)
relax_ads.write_input("./slab_with_adsorbate")
# After calculations:
# E_ads = E(slab+adsorbate) - E(slab) - E(adsorbate_gas)
```
### Workflow 10: High-Throughput Materials Screening
Screen materials database for specific properties.
```python
from mp_api.client import MPRester
from pymatgen.core import Structure
import pandas as pd
# Define screening criteria
def screen_material(material):
"""Screen for potential battery cathode materials"""
criteria = {
"has_li": "Li" in material.composition.elements,
"stable": material.energy_above_hull < 0.05,
"good_voltage": 2.5 < material.formation_energy_per_atom < 4.5,
"electronically_conductive": material.band_gap < 0.5
}
return all(criteria.values()), criteria
# Query Materials Project
with MPRester() as mpr:
# Get potential materials
materials = mpr.materials.summary.search(
elements=["Li"],
energy_above_hull=(0, 0.05),
)
results = []
for mat in materials:
passes, criteria = screen_material(mat)
if passes:
results.append({
"material_id": mat.material_id,
"formula": mat.formula_pretty,
"energy_above_hull": mat.energy_above_hull,
"band_gap": mat.band_gap,
})
# Save results
df = pd.DataFrame(results)
df.to_csv("screened_materials.csv", index=False)
print(f"Found {len(results)} promising materials")
```
## Best Practices for Workflows
1. **Modular design**: Break workflows into discrete steps
2. **Error handling**: Check file existence and calculation convergence
3. **Documentation**: Track transformation history using `TransformedStructure`
4. **Version control**: Store input parameters and scripts in git
5. **Automation**: Use workflow managers (Fireworks, AiiDA) for complex pipelines
6. **Data management**: Organize calculations in clear directory structures
7. **Validation**: Always validate intermediate results before proceeding
## Integration with Workflow Tools
Pymatgen integrates with several workflow management systems:
- **Atomate**: Pre-built VASP workflows
- **Fireworks**: Workflow execution engine
- **AiiDA**: Provenance tracking and workflow management
- **Custodian**: Error correction and job monitoring
These tools provide robust automation for production calculations.