Initial commit
This commit is contained in:
239
skills/pufferlib/scripts/train_template.py
Normal file
239
skills/pufferlib/scripts/train_template.py
Normal file
@@ -0,0 +1,239 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
PufferLib Training Template
|
||||
|
||||
This template provides a complete training script for reinforcement learning
|
||||
with PufferLib. Customize the environment, policy, and training configuration
|
||||
as needed for your use case.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import pufferlib
|
||||
from pufferlib import PuffeRL
|
||||
from pufferlib.pytorch import layer_init
|
||||
|
||||
|
||||
class Policy(nn.Module):
|
||||
"""Example policy network."""
|
||||
|
||||
def __init__(self, observation_space, action_space, hidden_size=256):
|
||||
super().__init__()
|
||||
|
||||
self.observation_space = observation_space
|
||||
self.action_space = action_space
|
||||
|
||||
# Encoder network
|
||||
self.encoder = nn.Sequential(
|
||||
layer_init(nn.Linear(observation_space.shape[0], hidden_size)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Linear(hidden_size, hidden_size)),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
# Policy head (actor)
|
||||
self.actor = layer_init(nn.Linear(hidden_size, action_space.n), std=0.01)
|
||||
|
||||
# Value head (critic)
|
||||
self.critic = layer_init(nn.Linear(hidden_size, 1), std=1.0)
|
||||
|
||||
def forward(self, observations):
|
||||
"""Forward pass through policy."""
|
||||
features = self.encoder(observations)
|
||||
logits = self.actor(features)
|
||||
value = self.critic(features)
|
||||
return logits, value
|
||||
|
||||
|
||||
def make_env():
|
||||
"""Create environment. Customize this for your task."""
|
||||
# Option 1: Use Ocean environment
|
||||
return pufferlib.make('procgen-coinrun', num_envs=256)
|
||||
|
||||
# Option 2: Use Gymnasium environment
|
||||
# return pufferlib.make('gym-CartPole-v1', num_envs=256)
|
||||
|
||||
# Option 3: Use custom environment
|
||||
# from my_envs import MyEnvironment
|
||||
# return pufferlib.emulate(MyEnvironment, num_envs=256)
|
||||
|
||||
|
||||
def create_policy(env):
|
||||
"""Create policy network."""
|
||||
return Policy(
|
||||
observation_space=env.observation_space,
|
||||
action_space=env.action_space,
|
||||
hidden_size=256
|
||||
)
|
||||
|
||||
|
||||
def train(args):
|
||||
"""Main training function."""
|
||||
# Set random seeds
|
||||
torch.manual_seed(args.seed)
|
||||
|
||||
# Create environment
|
||||
print(f"Creating environment with {args.num_envs} parallel environments...")
|
||||
env = pufferlib.make(
|
||||
args.env_name,
|
||||
num_envs=args.num_envs,
|
||||
num_workers=args.num_workers
|
||||
)
|
||||
|
||||
# Create policy
|
||||
print("Initializing policy...")
|
||||
policy = create_policy(env)
|
||||
|
||||
if args.device == 'cuda' and torch.cuda.is_available():
|
||||
policy = policy.cuda()
|
||||
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
||||
else:
|
||||
print("Using CPU")
|
||||
|
||||
# Create logger
|
||||
if args.logger == 'wandb':
|
||||
from pufferlib import WandbLogger
|
||||
logger = WandbLogger(
|
||||
project=args.project,
|
||||
name=args.exp_name,
|
||||
config=vars(args)
|
||||
)
|
||||
elif args.logger == 'neptune':
|
||||
from pufferlib import NeptuneLogger
|
||||
logger = NeptuneLogger(
|
||||
project=args.project,
|
||||
name=args.exp_name,
|
||||
api_token=args.neptune_token
|
||||
)
|
||||
else:
|
||||
from pufferlib import NoLogger
|
||||
logger = NoLogger()
|
||||
|
||||
# Create trainer
|
||||
print("Creating trainer...")
|
||||
trainer = PuffeRL(
|
||||
env=env,
|
||||
policy=policy,
|
||||
device=args.device,
|
||||
learning_rate=args.learning_rate,
|
||||
batch_size=args.batch_size,
|
||||
n_epochs=args.n_epochs,
|
||||
gamma=args.gamma,
|
||||
gae_lambda=args.gae_lambda,
|
||||
clip_coef=args.clip_coef,
|
||||
ent_coef=args.ent_coef,
|
||||
vf_coef=args.vf_coef,
|
||||
max_grad_norm=args.max_grad_norm,
|
||||
logger=logger,
|
||||
compile=args.compile
|
||||
)
|
||||
|
||||
# Training loop
|
||||
print(f"Starting training for {args.num_iterations} iterations...")
|
||||
for iteration in range(1, args.num_iterations + 1):
|
||||
# Collect rollouts
|
||||
rollout_data = trainer.evaluate()
|
||||
|
||||
# Train on batch
|
||||
train_metrics = trainer.train()
|
||||
|
||||
# Log results
|
||||
trainer.mean_and_log()
|
||||
|
||||
# Save checkpoint
|
||||
if iteration % args.save_freq == 0:
|
||||
checkpoint_path = f"{args.checkpoint_dir}/checkpoint_{iteration}.pt"
|
||||
trainer.save_checkpoint(checkpoint_path)
|
||||
print(f"Saved checkpoint to {checkpoint_path}")
|
||||
|
||||
# Print progress
|
||||
if iteration % args.log_freq == 0:
|
||||
mean_reward = rollout_data.get('mean_reward', 0)
|
||||
sps = rollout_data.get('sps', 0)
|
||||
print(f"Iteration {iteration}/{args.num_iterations} | "
|
||||
f"Mean Reward: {mean_reward:.2f} | "
|
||||
f"SPS: {sps:,.0f}")
|
||||
|
||||
print("Training complete!")
|
||||
|
||||
# Save final model
|
||||
final_path = f"{args.checkpoint_dir}/final_model.pt"
|
||||
trainer.save_checkpoint(final_path)
|
||||
print(f"Saved final model to {final_path}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='PufferLib Training')
|
||||
|
||||
# Environment
|
||||
parser.add_argument('--env-name', type=str, default='procgen-coinrun',
|
||||
help='Environment name')
|
||||
parser.add_argument('--num-envs', type=int, default=256,
|
||||
help='Number of parallel environments')
|
||||
parser.add_argument('--num-workers', type=int, default=8,
|
||||
help='Number of vectorization workers')
|
||||
|
||||
# Training
|
||||
parser.add_argument('--num-iterations', type=int, default=10000,
|
||||
help='Number of training iterations')
|
||||
parser.add_argument('--learning-rate', type=float, default=3e-4,
|
||||
help='Learning rate')
|
||||
parser.add_argument('--batch-size', type=int, default=32768,
|
||||
help='Batch size for training')
|
||||
parser.add_argument('--n-epochs', type=int, default=4,
|
||||
help='Number of training epochs per batch')
|
||||
parser.add_argument('--device', type=str, default='cuda',
|
||||
choices=['cuda', 'cpu'], help='Device to use')
|
||||
|
||||
# PPO Parameters
|
||||
parser.add_argument('--gamma', type=float, default=0.99,
|
||||
help='Discount factor')
|
||||
parser.add_argument('--gae-lambda', type=float, default=0.95,
|
||||
help='GAE lambda')
|
||||
parser.add_argument('--clip-coef', type=float, default=0.2,
|
||||
help='PPO clipping coefficient')
|
||||
parser.add_argument('--ent-coef', type=float, default=0.01,
|
||||
help='Entropy coefficient')
|
||||
parser.add_argument('--vf-coef', type=float, default=0.5,
|
||||
help='Value function coefficient')
|
||||
parser.add_argument('--max-grad-norm', type=float, default=0.5,
|
||||
help='Maximum gradient norm')
|
||||
|
||||
# Logging
|
||||
parser.add_argument('--logger', type=str, default='none',
|
||||
choices=['wandb', 'neptune', 'none'],
|
||||
help='Logger to use')
|
||||
parser.add_argument('--project', type=str, default='pufferlib-training',
|
||||
help='Project name for logging')
|
||||
parser.add_argument('--exp-name', type=str, default='experiment',
|
||||
help='Experiment name')
|
||||
parser.add_argument('--neptune-token', type=str, default=None,
|
||||
help='Neptune API token')
|
||||
parser.add_argument('--log-freq', type=int, default=10,
|
||||
help='Logging frequency (iterations)')
|
||||
|
||||
# Checkpointing
|
||||
parser.add_argument('--checkpoint-dir', type=str, default='checkpoints',
|
||||
help='Directory to save checkpoints')
|
||||
parser.add_argument('--save-freq', type=int, default=100,
|
||||
help='Checkpoint save frequency (iterations)')
|
||||
|
||||
# Misc
|
||||
parser.add_argument('--seed', type=int, default=42,
|
||||
help='Random seed')
|
||||
parser.add_argument('--compile', action='store_true',
|
||||
help='Use torch.compile for faster training')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Create checkpoint directory
|
||||
import os
|
||||
os.makedirs(args.checkpoint_dir, exist_ok=True)
|
||||
|
||||
# Run training
|
||||
train(args)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user