Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,428 @@
# Molfeat API Reference
## Core Modules
Molfeat is organized into several key modules that provide different aspects of molecular featurization:
- **`molfeat.store`** - Manages model loading, listing, and registration
- **`molfeat.calc`** - Provides calculators for single-molecule featurization
- **`molfeat.trans`** - Offers scikit-learn compatible transformers for batch processing
- **`molfeat.utils`** - Utility functions for data handling
- **`molfeat.viz`** - Visualization tools for molecular features
---
## molfeat.calc - Calculators
Calculators are callable objects that convert individual molecules into feature vectors. They accept either RDKit `Chem.Mol` objects or SMILES strings as input.
### SerializableCalculator (Base Class)
Base abstract class for all calculators. When subclassing, must implement:
- `__call__()` - Required method for featurization
- `__len__()` - Optional, returns output length
- `columns` - Optional property, returns feature names
- `batch_compute()` - Optional, for efficient batch processing
**State Management Methods:**
- `to_state_json()` - Save calculator state as JSON
- `to_state_yaml()` - Save calculator state as YAML
- `from_state_dict()` - Load calculator from state dictionary
- `to_state_dict()` - Export calculator state as dictionary
### FPCalculator
Computes molecular fingerprints. Supports 15+ fingerprint methods.
**Supported Fingerprint Types:**
**Structural Fingerprints:**
- `ecfp` - Extended-connectivity fingerprints (circular)
- `fcfp` - Functional-class fingerprints
- `rdkit` - RDKit topological fingerprints
- `maccs` - MACCS keys (166-bit structural keys)
- `avalon` - Avalon fingerprints
- `pattern` - Pattern fingerprints
- `layered` - Layered fingerprints
**Atom-based Fingerprints:**
- `atompair` - Atom pair fingerprints
- `atompair-count` - Counted atom pairs
- `topological` - Topological torsion fingerprints
- `topological-count` - Counted topological torsions
**Specialized Fingerprints:**
- `map4` - MinHashed atom-pair fingerprint up to 4 bonds
- `secfp` - SMILES extended connectivity fingerprint
- `erg` - Extended reduced graphs
- `estate` - Electrotopological state indices
**Parameters:**
- `method` (str) - Fingerprint type name
- `radius` (int) - Radius for circular fingerprints (default: 3)
- `fpSize` (int) - Fingerprint size (default: 2048)
- `includeChirality` (bool) - Include chirality information
- `counting` (bool) - Use count vectors instead of binary
**Usage:**
```python
from molfeat.calc import FPCalculator
# Create fingerprint calculator
calc = FPCalculator("ecfp", radius=3, fpSize=2048)
# Compute fingerprint for single molecule
fp = calc("CCO") # Returns numpy array
# Get fingerprint length
length = len(calc) # 2048
# Get feature names
names = calc.columns
```
**Common Fingerprint Dimensions:**
- MACCS: 167 dimensions
- ECFP (default): 2048 dimensions
- MAP4 (default): 1024 dimensions
### Descriptor Calculators
**RDKitDescriptors2D**
Computes 2D molecular descriptors using RDKit.
```python
from molfeat.calc import RDKitDescriptors2D
calc = RDKitDescriptors2D()
descriptors = calc("CCO") # Returns 200+ descriptors
```
**RDKitDescriptors3D**
Computes 3D molecular descriptors (requires conformer generation).
**MordredDescriptors**
Calculates over 1800 molecular descriptors using Mordred.
```python
from molfeat.calc import MordredDescriptors
calc = MordredDescriptors()
descriptors = calc("CCO")
```
### Pharmacophore Calculators
**Pharmacophore2D**
RDKit's 2D pharmacophore fingerprint generation.
**Pharmacophore3D**
Consensus pharmacophore fingerprints from multiple conformers.
**CATSCalculator**
Computes Chemically Advanced Template Search (CATS) descriptors - pharmacophore point pair distributions.
**Parameters:**
- `mode` - "2D" or "3D" distance calculations
- `dist_bins` - Distance bins for pair distributions
- `scale` - Scaling mode: "raw", "num", or "count"
```python
from molfeat.calc import CATSCalculator
calc = CATSCalculator(mode="2D", scale="raw")
cats = calc("CCO") # Returns 21 descriptors by default
```
### Shape Descriptors
**USRDescriptors**
Ultrafast shape recognition descriptors (multiple variants).
**ElectroShapeDescriptors**
Electrostatic shape descriptors combining shape, chirality, and electrostatics.
### Graph-Based Calculators
**ScaffoldKeyCalculator**
Computes 40+ scaffold-based molecular properties.
**AtomCalculator**
Atom-level featurization for graph neural networks.
**BondCalculator**
Bond-level featurization for graph neural networks.
### Utility Function
**get_calculator()**
Factory function to instantiate calculators by name.
```python
from molfeat.calc import get_calculator
# Instantiate any calculator by name
calc = get_calculator("ecfp", radius=3)
calc = get_calculator("maccs")
calc = get_calculator("desc2D")
```
Raises `ValueError` for unsupported featurizers.
---
## molfeat.trans - Transformers
Transformers wrap calculators into complete featurization pipelines for batch processing.
### MoleculeTransformer
Scikit-learn compatible transformer for batch molecular featurization.
**Key Parameters:**
- `featurizer` - Calculator or featurizer to use
- `n_jobs` (int) - Number of parallel jobs (-1 for all cores)
- `dtype` - Output data type (numpy float32/64, torch tensors)
- `verbose` (bool) - Enable verbose logging
- `ignore_errors` (bool) - Continue on failures (returns None for failed molecules)
**Essential Methods:**
- `transform(mols)` - Processes batches and returns representations
- `_transform(mol)` - Handles individual molecule featurization
- `__call__(mols)` - Convenience wrapper around transform()
- `preprocess(mol)` - Prepares input molecules (not automatically applied)
- `to_state_yaml_file(path)` - Save transformer configuration
- `from_state_yaml_file(path)` - Load transformer configuration
**Usage:**
```python
from molfeat.calc import FPCalculator
from molfeat.trans import MoleculeTransformer
import datamol as dm
# Load molecules
smiles = dm.data.freesolv().sample(100).smiles.values
# Create transformer
calc = FPCalculator("ecfp")
transformer = MoleculeTransformer(calc, n_jobs=-1)
# Featurize batch
features = transformer(smiles) # Returns numpy array (100, 2048)
# Save configuration
transformer.to_state_yaml_file("ecfp_config.yml")
# Reload
transformer = MoleculeTransformer.from_state_yaml_file("ecfp_config.yml")
```
**Performance:** Testing on 642 molecules showed 3.4x speedup using 4 parallel jobs versus single-threaded processing.
### FeatConcat
Concatenates multiple featurizers into unified representations.
```python
from molfeat.trans import FeatConcat
from molfeat.calc import FPCalculator
# Combine multiple fingerprints
concat = FeatConcat([
FPCalculator("maccs"), # 167 dimensions
FPCalculator("ecfp") # 2048 dimensions
])
# Result: 2167-dimensional features
transformer = MoleculeTransformer(concat, n_jobs=-1)
features = transformer(smiles)
```
### PretrainedMolTransformer
Subclass of `MoleculeTransformer` for pre-trained deep learning models.
**Unique Features:**
- `_embed()` - Batched inference for neural networks
- `_convert()` - Transforms SMILES/molecules into model-compatible formats
- SELFIES strings for language models
- DGL graphs for graph neural networks
- Integrated caching system for efficient storage
**Usage:**
```python
from molfeat.trans.pretrained import PretrainedMolTransformer
# Load pretrained model
transformer = PretrainedMolTransformer("ChemBERTa-77M-MLM", n_jobs=-1)
# Generate embeddings
embeddings = transformer(smiles)
```
### PrecomputedMolTransformer
Transformer for cached/precomputed features.
---
## molfeat.store - Model Store
Manages featurizer discovery, loading, and registration.
### ModelStore
Central hub for accessing available featurizers.
**Key Methods:**
- `available_models` - Property listing all available featurizers
- `search(name=None, **kwargs)` - Search for specific featurizers
- `load(name, **kwargs)` - Load a featurizer by name
- `register(name, card)` - Register custom featurizer
**Usage:**
```python
from molfeat.store.modelstore import ModelStore
# Initialize store
store = ModelStore()
# List all available models
all_models = store.available_models
print(f"Found {len(all_models)} featurizers")
# Search for specific model
results = store.search(name="ChemBERTa-77M-MLM")
if results:
model_card = results[0]
# View usage information
model_card.usage()
# Load the model
transformer = model_card.load()
# Direct loading
transformer = store.load("ChemBERTa-77M-MLM")
```
**ModelCard Attributes:**
- `name` - Model identifier
- `description` - Model description
- `version` - Model version
- `authors` - Model authors
- `tags` - Categorization tags
- `usage()` - Display usage examples
- `load(**kwargs)` - Load the model
---
## Common Patterns
### Error Handling
```python
# Enable error tolerance
featurizer = MoleculeTransformer(
calc,
n_jobs=-1,
verbose=True,
ignore_errors=True
)
# Failed molecules return None
features = featurizer(smiles_with_errors)
```
### Data Type Control
```python
# NumPy float32 (default)
features = transformer(smiles, enforce_dtype=True)
# PyTorch tensors
import torch
transformer = MoleculeTransformer(calc, dtype=torch.float32)
features = transformer(smiles)
```
### Persistence and Reproducibility
```python
# Save transformer state
transformer.to_state_yaml_file("config.yml")
transformer.to_state_json_file("config.json")
# Load from saved state
transformer = MoleculeTransformer.from_state_yaml_file("config.yml")
transformer = MoleculeTransformer.from_state_json_file("config.json")
```
### Preprocessing
```python
# Manual preprocessing
mol = transformer.preprocess("CCO")
# Transform with preprocessing
features = transformer.transform(smiles_list)
```
---
## Integration Examples
### Scikit-learn Pipeline
```python
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from molfeat.trans import MoleculeTransformer
from molfeat.calc import FPCalculator
# Create pipeline
pipeline = Pipeline([
('featurizer', MoleculeTransformer(FPCalculator("ecfp"))),
('classifier', RandomForestClassifier())
])
# Fit and predict
pipeline.fit(smiles_train, y_train)
predictions = pipeline.predict(smiles_test)
```
### PyTorch Integration
```python
import torch
from torch.utils.data import Dataset, DataLoader
from molfeat.trans import MoleculeTransformer
class MoleculeDataset(Dataset):
def __init__(self, smiles, labels, transformer):
self.smiles = smiles
self.labels = labels
self.transformer = transformer
def __len__(self):
return len(self.smiles)
def __getitem__(self, idx):
features = self.transformer(self.smiles[idx])
return torch.tensor(features), torch.tensor(self.labels[idx])
# Create dataset and dataloader
transformer = MoleculeTransformer(FPCalculator("ecfp"))
dataset = MoleculeDataset(smiles, labels, transformer)
loader = DataLoader(dataset, batch_size=32)
```
---
## Performance Tips
1. **Parallelization**: Use `n_jobs=-1` to utilize all CPU cores
2. **Batch Processing**: Process multiple molecules at once instead of loops
3. **Caching**: Leverage built-in caching for pretrained models
4. **Data Types**: Use float32 instead of float64 when precision allows
5. **Error Handling**: Set `ignore_errors=True` for large datasets with potential invalid molecules

View File

@@ -0,0 +1,333 @@
# Available Featurizers in Molfeat
This document provides a comprehensive catalog of all featurizers available in molfeat, organized by category.
## Transformer-Based Language Models
Pre-trained transformer models for molecular embeddings using SMILES/SELFIES representations.
### RoBERTa-style Models
- **Roberta-Zinc480M-102M** - RoBERTa masked language model trained on ~480M SMILES strings from ZINC database
- **ChemBERTa-77M-MLM** - Masked language model based on RoBERTa trained on 77M PubChem compounds
- **ChemBERTa-77M-MTR** - Multitask regression version trained on PubChem compounds
### GPT-style Autoregressive Models
- **GPT2-Zinc480M-87M** - GPT-2 autoregressive language model trained on ~480M SMILES from ZINC
- **ChemGPT-1.2B** - Large transformer (1.2B parameters) pretrained on PubChem10M
- **ChemGPT-19M** - Medium transformer (19M parameters) pretrained on PubChem10M
- **ChemGPT-4.7M** - Small transformer (4.7M parameters) pretrained on PubChem10M
### Specialized Transformer Models
- **MolT5** - Self-supervised framework for molecule captioning and text-based generation
## Graph Neural Networks (GNNs)
Pre-trained graph neural network models operating on molecular graph structures.
### GIN (Graph Isomorphism Network) Variants
All pre-trained on ChEMBL molecules with different objectives:
- **gin-supervised-masking** - Supervised with node masking objective
- **gin-supervised-infomax** - Supervised with graph-level mutual information maximization
- **gin-supervised-edgepred** - Supervised with edge prediction objective
- **gin-supervised-contextpred** - Supervised with context prediction objective
### Other Graph-Based Models
- **JTVAE_zinc_no_kl** - Junction-tree VAE for molecule generation (trained on ZINC)
- **Graphormer-pcqm4mv2** - Graph transformer pretrained on PCQM4Mv2 quantum chemistry dataset for HOMO-LUMO gap prediction
## Molecular Descriptors
Calculators for physico-chemical properties and molecular characteristics.
### 2D Descriptors
- **desc2D** / **rdkit2D** - 200+ RDKit 2D molecular descriptors including:
- Molecular weight, logP, TPSA
- H-bond donors/acceptors
- Rotatable bonds
- Ring counts and aromaticity
- Molecular complexity metrics
### 3D Descriptors
- **desc3D** / **rdkit3D** - RDKit 3D molecular descriptors (requires conformer generation)
- Inertial moments
- PMI (Principal Moments of Inertia) ratios
- Asphericity, eccentricity
- Radius of gyration
### Comprehensive Descriptor Sets
- **mordred** - Over 1800 molecular descriptors covering:
- Constitutional descriptors
- Topological indices
- Connectivity indices
- Information content
- 2D/3D autocorrelations
- WHIM descriptors
- GETAWAY descriptors
- And many more
### Electrotopological Descriptors
- **estate** - Electrotopological state (E-State) indices encoding:
- Atomic environment information
- Electronic and topological properties
- Heteroatom contributions
## Molecular Fingerprints
Binary or count-based fixed-length vectors representing molecular substructures.
### Circular Fingerprints (ECFP-style)
- **ecfp** / **ecfp:2** / **ecfp:4** / **ecfp:6** - Extended-connectivity fingerprints
- Radius variants (2, 4, 6 correspond to diameter)
- Default: radius=3, 2048 bits
- Most popular for similarity searching
- **ecfp-count** - Count version of ECFP (non-binary)
- **fcfp** / **fcfp-count** - Functional-class circular fingerprints
- Similar to ECFP but uses functional groups
- Better for pharmacophore-based similarity
### Path-Based Fingerprints
- **rdkit** - RDKit topological fingerprints based on linear paths
- **pattern** - Pattern fingerprints (similar to MACCS but automated)
- **layered** - Layered fingerprints with multiple substructure layers
### Key-Based Fingerprints
- **maccs** - MACCS keys (166-bit structural keys)
- Fixed set of predefined substructures
- Good for scaffold hopping
- Fast computation
- **avalon** - Avalon fingerprints
- Similar to MACCS but more features
- Optimized for similarity searching
### Atom-Pair Fingerprints
- **atompair** - Atom pair fingerprints
- Encodes pairs of atoms and distance between them
- Good for 3D similarity
- **atompair-count** - Count version of atom pairs
### Topological Torsion Fingerprints
- **topological** - Topological torsion fingerprints
- Encodes sequences of 4 connected atoms
- Captures local topology
- **topological-count** - Count version of topological torsions
### MinHashed Fingerprints
- **map4** - MinHashed Atom-Pair fingerprint up to 4 bonds
- Combines atom-pair and ECFP concepts
- Default: 1024 dimensions
- Fast and efficient for large datasets
- **secfp** - SMILES Extended Connectivity Fingerprint
- Operates directly on SMILES strings
- Captures both substructure and atom-pair information
### Extended Reduced Graph
- **erg** - Extended Reduced Graph
- Uses pharmacophoric points instead of atoms
- Reduces graph complexity while preserving key features
## Pharmacophore Descriptors
Features based on pharmacologically relevant functional groups and their spatial relationships.
### CATS (Chemically Advanced Template Search)
- **cats2D** - 2D CATS descriptors
- Pharmacophore point pair distributions
- Distance based on shortest path
- 21 descriptors by default
- **cats3D** - 3D CATS descriptors
- Euclidean distance based
- Requires conformer generation
- **cats2D_pharm** / **cats3D_pharm** - Pharmacophore variants
### Gobbi Pharmacophores
- **gobbi2D** - 2D pharmacophore fingerprints
- 8 pharmacophore feature types:
- Hydrophobic
- Aromatic
- H-bond acceptor
- H-bond donor
- Positive ionizable
- Negative ionizable
- Lumped hydrophobe
- Good for virtual screening
### Pmapper Pharmacophores
- **pmapper2D** - 2D pharmacophore signatures
- **pmapper3D** - 3D pharmacophore signatures
- High-dimensional pharmacophore descriptors
- Useful for QSAR and similarity searching
## Shape Descriptors
Descriptors capturing 3D molecular shape and electrostatic properties.
### USR (Ultrafast Shape Recognition)
- **usr** - Basic USR descriptors
- 12 dimensions encoding shape distribution
- Extremely fast computation
- **usrcat** - USR with pharmacophoric constraints
- 60 dimensions (12 per feature type)
- Combines shape and pharmacophore information
### Electrostatic Shape
- **electroshape** - ElectroShape descriptors
- Combines molecular shape, chirality, and electrostatics
- Useful for protein-ligand docking predictions
## Scaffold-Based Descriptors
Descriptors based on molecular scaffolds and core structures.
### Scaffold Keys
- **scaffoldkeys** - Scaffold key calculator
- 40+ scaffold-based properties
- Bioisosteric scaffold representation
- Captures core structural features
## Graph Featurizers for GNN Input
Atom and bond-level features for constructing graph representations for Graph Neural Networks.
### Atom-Level Features
- **atom-onehot** - One-hot encoded atom features
- **atom-default** - Default atom featurization including:
- Atomic number
- Degree, formal charge
- Hybridization
- Aromaticity
- Number of hydrogen atoms
### Bond-Level Features
- **bond-onehot** - One-hot encoded bond features
- **bond-default** - Default bond featurization including:
- Bond type (single, double, triple, aromatic)
- Conjugation
- Ring membership
- Stereochemistry
## Integrated Pretrained Model Collections
Molfeat integrates models from various sources:
### HuggingFace Models
Access to transformer models through HuggingFace hub:
- ChemBERTa variants
- ChemGPT variants
- MolT5
- Custom uploaded models
### DGL-LifeSci Models
Pre-trained GNN models from DGL-Life:
- GIN variants with different pre-training tasks
- AttentiveFP models
- MPNN models
### FCD (Fréchet ChemNet Distance)
- **fcd** - Pre-trained CNN for molecular generation evaluation
### Graphormer Models
- Graph transformers from Microsoft Research
- Pre-trained on quantum chemistry datasets
## Usage Notes
### Choosing a Featurizer
**For traditional ML (Random Forest, SVM, etc.):**
- Start with **ecfp** or **maccs** fingerprints
- Try **desc2D** for interpretable models
- Use **FeatConcat** to combine multiple fingerprints
**For deep learning:**
- Use **ChemBERTa** or **ChemGPT** for transformer embeddings
- Use **gin-supervised-*** for graph neural network embeddings
- Consider **Graphormer** for quantum property predictions
**For similarity searching:**
- **ecfp** - General purpose, most popular
- **maccs** - Fast, good for scaffold hopping
- **map4** - Efficient for large-scale searches
- **usr** / **usrcat** - 3D shape similarity
**For pharmacophore-based approaches:**
- **fcfp** - Functional group based
- **cats2D/3D** - Pharmacophore pair distributions
- **gobbi2D** - Explicit pharmacophore features
**For interpretability:**
- **desc2D** / **mordred** - Named descriptors
- **maccs** - Interpretable substructure keys
- **scaffoldkeys** - Scaffold-based features
### Model Dependencies
Some featurizers require optional dependencies:
- **DGL models** (gin-*, jtvae): `pip install "molfeat[dgl]"`
- **Graphormer**: `pip install "molfeat[graphormer]"`
- **Transformers** (ChemBERTa, ChemGPT, MolT5): `pip install "molfeat[transformer]"`
- **FCD**: `pip install "molfeat[fcd]"`
- **MAP4**: `pip install "molfeat[map4]"`
- **All dependencies**: `pip install "molfeat[all]"`
### Accessing All Available Models
```python
from molfeat.store.modelstore import ModelStore
store = ModelStore()
all_models = store.available_models
# Print all available featurizers
for model in all_models:
print(f"{model.name}: {model.description}")
# Search for specific types
transformers = [m for m in all_models if "transformer" in m.tags]
gnn_models = [m for m in all_models if "gnn" in m.tags]
fingerprints = [m for m in all_models if "fingerprint" in m.tags]
```
## Performance Characteristics
### Computational Speed (relative)
**Fastest:**
- maccs
- ecfp
- rdkit fingerprints
- usr
**Medium:**
- desc2D
- cats2D
- Most fingerprints
**Slower:**
- mordred (1800+ descriptors)
- desc3D (requires conformer generation)
- 3D descriptors in general
**Slowest (first run):**
- Pretrained models (ChemBERTa, ChemGPT, GIN)
- Note: Subsequent runs benefit from caching
### Dimensionality
**Low (< 200 dims):**
- maccs (167)
- usr (12)
- usrcat (60)
**Medium (200-2000 dims):**
- desc2D (~200)
- ecfp (2048 default, configurable)
- map4 (1024 default)
**High (> 2000 dims):**
- mordred (1800+)
- Concatenated fingerprints
- Some transformer embeddings
**Variable:**
- Transformer models (typically 768-1024)
- GNN models (depends on architecture)

View File

@@ -0,0 +1,723 @@
# Molfeat Usage Examples
This document provides practical examples for common molfeat use cases.
## Installation
```bash
# Recommended: Using conda/mamba
mamba install -c conda-forge molfeat
# Alternative: Using pip
pip install molfeat
# With all optional dependencies
pip install "molfeat[all]"
# With specific dependencies
pip install "molfeat[dgl]" # For GNN models
pip install "molfeat[graphormer]" # For Graphormer
pip install "molfeat[transformer]" # For ChemBERTa, ChemGPT
```
---
## Quick Start
### Basic Featurization Workflow
```python
import datamol as dm
from molfeat.calc import FPCalculator
from molfeat.trans import MoleculeTransformer
# Load sample data
data = dm.data.freesolv().sample(100).smiles.values
# Single molecule featurization
calc = FPCalculator("ecfp")
features_single = calc(data[0])
print(f"Single molecule features shape: {features_single.shape}")
# Output: (2048,)
# Batch featurization with parallelization
transformer = MoleculeTransformer(calc, n_jobs=-1)
features_batch = transformer(data)
print(f"Batch features shape: {features_batch.shape}")
# Output: (100, 2048)
```
---
## Calculator Examples
### Fingerprint Calculators
```python
from molfeat.calc import FPCalculator
# ECFP (Extended-Connectivity Fingerprints)
ecfp = FPCalculator("ecfp", radius=3, fpSize=2048)
fp = ecfp("CCO") # Ethanol
print(f"ECFP shape: {fp.shape}") # (2048,)
# MACCS keys
maccs = FPCalculator("maccs")
fp = maccs("c1ccccc1") # Benzene
print(f"MACCS shape: {fp.shape}") # (167,)
# Count-based fingerprints
ecfp_count = FPCalculator("ecfp-count", radius=3)
fp_count = ecfp_count("CC(C)CC(C)C") # Non-binary counts
# MAP4 fingerprints
map4 = FPCalculator("map4")
fp = map4("CC(=O)Oc1ccccc1C(=O)O") # Aspirin
```
### Descriptor Calculators
```python
from molfeat.calc import RDKitDescriptors2D, MordredDescriptors
# RDKit 2D descriptors (200+ properties)
desc2d = RDKitDescriptors2D()
descriptors = desc2d("CCO")
print(f"Number of 2D descriptors: {len(descriptors)}")
# Get descriptor names
names = desc2d.columns
print(f"First 5 descriptors: {names[:5]}")
# Mordred descriptors (1800+ properties)
mordred = MordredDescriptors()
descriptors = mordred("c1ccccc1O") # Phenol
print(f"Mordred descriptors: {len(descriptors)}")
```
### Pharmacophore Calculators
```python
from molfeat.calc import CATSCalculator
# 2D CATS descriptors
cats = CATSCalculator(mode="2D", scale="raw")
descriptors = cats("CC(C)Cc1ccc(C)cc1C") # Cymene
print(f"CATS descriptors: {descriptors.shape}") # (21,)
# 3D CATS descriptors (requires conformer)
cats3d = CATSCalculator(mode="3D", scale="num")
```
---
## Transformer Examples
### Basic Transformer Usage
```python
from molfeat.trans import MoleculeTransformer
from molfeat.calc import FPCalculator
import datamol as dm
# Prepare data
smiles_list = [
"CCO",
"CC(=O)O",
"c1ccccc1",
"CC(C)O",
"CCCC"
]
# Create transformer
calc = FPCalculator("ecfp")
transformer = MoleculeTransformer(calc, n_jobs=-1)
# Transform molecules
features = transformer(smiles_list)
print(f"Features shape: {features.shape}") # (5, 2048)
```
### Error Handling
```python
# Handle invalid SMILES gracefully
smiles_with_errors = [
"CCO", # Valid
"invalid", # Invalid
"CC(=O)O", # Valid
"xyz123", # Invalid
]
transformer = MoleculeTransformer(
FPCalculator("ecfp"),
n_jobs=-1,
verbose=True, # Log errors
ignore_errors=True # Continue on failure
)
features = transformer(smiles_with_errors)
# Returns: array with None for failed molecules
print(features) # [array(...), None, array(...), None]
```
### Concatenating Multiple Featurizers
```python
from molfeat.trans import FeatConcat, MoleculeTransformer
from molfeat.calc import FPCalculator
# Combine MACCS (167) + ECFP (2048) = 2215 dimensions
concat_calc = FeatConcat([
FPCalculator("maccs"),
FPCalculator("ecfp", radius=3, fpSize=2048)
])
transformer = MoleculeTransformer(concat_calc, n_jobs=-1)
features = transformer(smiles_list)
print(f"Combined features shape: {features.shape}") # (n, 2215)
# Triple combination
triple_concat = FeatConcat([
FPCalculator("maccs"),
FPCalculator("ecfp"),
FPCalculator("rdkit")
])
```
### Saving and Loading Configurations
```python
from molfeat.trans import MoleculeTransformer
from molfeat.calc import FPCalculator
# Create and save transformer
transformer = MoleculeTransformer(
FPCalculator("ecfp", radius=3, fpSize=2048),
n_jobs=-1
)
# Save to YAML
transformer.to_state_yaml_file("my_featurizer.yml")
# Save to JSON
transformer.to_state_json_file("my_featurizer.json")
# Load from saved state
loaded_transformer = MoleculeTransformer.from_state_yaml_file("my_featurizer.yml")
# Use loaded transformer
features = loaded_transformer(smiles_list)
```
---
## Pretrained Model Examples
### Using the ModelStore
```python
from molfeat.store.modelstore import ModelStore
# Initialize model store
store = ModelStore()
# List all available models
print(f"Total available models: {len(store.available_models)}")
# Search for specific models
chemberta_models = store.search(name="ChemBERTa")
for model in chemberta_models:
print(f"- {model.name}: {model.description}")
# Get model information
model_card = store.search(name="ChemBERTa-77M-MLM")[0]
print(f"Model: {model_card.name}")
print(f"Version: {model_card.version}")
print(f"Authors: {model_card.authors}")
# View usage instructions
model_card.usage()
# Load model directly
transformer = store.load("ChemBERTa-77M-MLM")
```
### ChemBERTa Embeddings
```python
from molfeat.trans.pretrained import PretrainedMolTransformer
# Load ChemBERTa model
chemberta = PretrainedMolTransformer("ChemBERTa-77M-MLM", n_jobs=-1)
# Generate embeddings
smiles = ["CCO", "CC(=O)O", "c1ccccc1"]
embeddings = chemberta(smiles)
print(f"ChemBERTa embeddings shape: {embeddings.shape}")
# Output: (3, 768) - 768-dimensional embeddings
# Use in ML pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
embeddings, labels, test_size=0.2
)
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
```
### ChemGPT Models
```python
# Small model (4.7M parameters)
chemgpt_small = PretrainedMolTransformer("ChemGPT-4.7M", n_jobs=-1)
# Medium model (19M parameters)
chemgpt_medium = PretrainedMolTransformer("ChemGPT-19M", n_jobs=-1)
# Large model (1.2B parameters)
chemgpt_large = PretrainedMolTransformer("ChemGPT-1.2B", n_jobs=-1)
# Generate embeddings
embeddings = chemgpt_small(smiles)
```
### Graph Neural Network Models
```python
# GIN models with different pre-training objectives
gin_masking = PretrainedMolTransformer("gin-supervised-masking", n_jobs=-1)
gin_infomax = PretrainedMolTransformer("gin-supervised-infomax", n_jobs=-1)
gin_edgepred = PretrainedMolTransformer("gin-supervised-edgepred", n_jobs=-1)
# Generate graph embeddings
embeddings = gin_masking(smiles)
print(f"GIN embeddings shape: {embeddings.shape}")
# Graphormer (for quantum chemistry)
graphormer = PretrainedMolTransformer("Graphormer-pcqm4mv2", n_jobs=-1)
embeddings = graphormer(smiles)
```
---
## Machine Learning Integration
### Scikit-learn Pipeline
```python
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from molfeat.trans import MoleculeTransformer
from molfeat.calc import FPCalculator
# Create ML pipeline
pipeline = Pipeline([
('featurizer', MoleculeTransformer(FPCalculator("ecfp"), n_jobs=-1)),
('classifier', RandomForestClassifier(n_estimators=100))
])
# Train and evaluate
pipeline.fit(smiles_train, y_train)
predictions = pipeline.predict(smiles_test)
# Cross-validation
scores = cross_val_score(pipeline, smiles_all, y_all, cv=5)
print(f"CV scores: {scores.mean():.3f} (+/- {scores.std():.3f})")
```
### Grid Search for Hyperparameter Tuning
```python
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
# Define pipeline
pipeline = Pipeline([
('featurizer', MoleculeTransformer(FPCalculator("ecfp"), n_jobs=-1)),
('classifier', SVC())
])
# Define parameter grid
param_grid = {
'classifier__C': [0.1, 1, 10],
'classifier__kernel': ['rbf', 'linear'],
'classifier__gamma': ['scale', 'auto']
}
# Grid search
grid_search = GridSearchCV(pipeline, param_grid, cv=5, n_jobs=-1)
grid_search.fit(smiles_train, y_train)
print(f"Best parameters: {grid_search.best_params_}")
print(f"Best score: {grid_search.best_score_:.3f}")
```
### Multiple Featurizer Comparison
```python
from sklearn.metrics import roc_auc_score
# Test different featurizers
featurizers = {
'ECFP': FPCalculator("ecfp"),
'MACCS': FPCalculator("maccs"),
'RDKit': FPCalculator("rdkit"),
'Descriptors': RDKitDescriptors2D(),
'Combined': FeatConcat([
FPCalculator("maccs"),
FPCalculator("ecfp")
])
}
results = {}
for name, calc in featurizers.items():
transformer = MoleculeTransformer(calc, n_jobs=-1)
X_train = transformer(smiles_train)
X_test = transformer(smiles_test)
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
y_pred = clf.predict_proba(X_test)[:, 1]
auc = roc_auc_score(y_test, y_pred)
results[name] = auc
print(f"{name}: AUC = {auc:.3f}")
```
### PyTorch Deep Learning
```python
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from molfeat.trans import MoleculeTransformer
from molfeat.calc import FPCalculator
# Custom dataset
class MoleculeDataset(Dataset):
def __init__(self, smiles, labels, transformer):
self.features = transformer(smiles)
self.labels = torch.tensor(labels, dtype=torch.float32)
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
return (
torch.tensor(self.features[idx], dtype=torch.float32),
self.labels[idx]
)
# Prepare data
transformer = MoleculeTransformer(FPCalculator("ecfp"), n_jobs=-1)
train_dataset = MoleculeDataset(smiles_train, y_train, transformer)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# Simple neural network
class MoleculeClassifier(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.network = nn.Sequential(
nn.Linear(input_dim, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.network(x)
# Train model
model = MoleculeClassifier(input_dim=2048)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.BCELoss()
for epoch in range(10):
for batch_features, batch_labels in train_loader:
optimizer.zero_grad()
outputs = model(batch_features).squeeze()
loss = criterion(outputs, batch_labels)
loss.backward()
optimizer.step()
```
---
## Advanced Usage Patterns
### Custom Preprocessing
```python
from molfeat.trans import MoleculeTransformer
import datamol as dm
class CustomTransformer(MoleculeTransformer):
def preprocess(self, mol):
"""Custom preprocessing: standardize molecule"""
if isinstance(mol, str):
mol = dm.to_mol(mol)
# Standardize
mol = dm.standardize_mol(mol)
# Remove salts
mol = dm.remove_salts(mol)
return mol
# Use custom transformer
transformer = CustomTransformer(FPCalculator("ecfp"), n_jobs=-1)
features = transformer(smiles_list)
```
### Featurization with Conformers
```python
import datamol as dm
from molfeat.calc import RDKitDescriptors3D
# Generate conformers
def prepare_3d_mol(smiles):
mol = dm.to_mol(smiles)
mol = dm.add_hs(mol)
mol = dm.conform.generate_conformers(mol, n_confs=1)
return mol
# 3D descriptors
calc_3d = RDKitDescriptors3D()
smiles = "CC(C)Cc1ccc(C)cc1C"
mol_3d = prepare_3d_mol(smiles)
descriptors_3d = calc_3d(mol_3d)
```
### Parallel Batch Processing
```python
from molfeat.trans import MoleculeTransformer
from molfeat.calc import FPCalculator
import time
# Large dataset
smiles_large = load_large_dataset() # e.g., 100,000 molecules
# Test different parallelization levels
for n_jobs in [1, 2, 4, -1]:
transformer = MoleculeTransformer(
FPCalculator("ecfp"),
n_jobs=n_jobs
)
start = time.time()
features = transformer(smiles_large)
elapsed = time.time() - start
print(f"n_jobs={n_jobs}: {elapsed:.2f}s")
```
### Caching for Expensive Operations
```python
from molfeat.trans.pretrained import PretrainedMolTransformer
import pickle
# Load expensive pretrained model
transformer = PretrainedMolTransformer("ChemBERTa-77M-MLM", n_jobs=-1)
# Cache embeddings for reuse
cache_file = "embeddings_cache.pkl"
try:
# Try loading cached embeddings
with open(cache_file, "rb") as f:
embeddings = pickle.load(f)
print("Loaded cached embeddings")
except FileNotFoundError:
# Compute and cache
embeddings = transformer(smiles_list)
with open(cache_file, "wb") as f:
pickle.dump(embeddings, f)
print("Computed and cached embeddings")
```
---
## Common Workflows
### Virtual Screening Workflow
```python
from molfeat.calc import FPCalculator
from sklearn.ensemble import RandomForestClassifier
import datamol as dm
# 1. Prepare training data (known actives/inactives)
train_smiles = load_training_data()
train_labels = load_training_labels() # 1=active, 0=inactive
# 2. Featurize training set
transformer = MoleculeTransformer(FPCalculator("ecfp"), n_jobs=-1)
X_train = transformer(train_smiles)
# 3. Train classifier
clf = RandomForestClassifier(n_estimators=500, n_jobs=-1)
clf.fit(X_train, train_labels)
# 4. Featurize screening library
screening_smiles = load_screening_library() # e.g., 1M compounds
X_screen = transformer(screening_smiles)
# 5. Predict and rank
predictions = clf.predict_proba(X_screen)[:, 1]
ranked_indices = predictions.argsort()[::-1]
# 6. Get top hits
top_n = 1000
top_hits = [screening_smiles[i] for i in ranked_indices[:top_n]]
```
### QSAR Model Building
```python
from molfeat.calc import RDKitDescriptors2D
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
import numpy as np
# Load QSAR dataset
smiles = load_molecules()
y = load_activity_values() # e.g., IC50, logP
# Featurize with interpretable descriptors
transformer = MoleculeTransformer(RDKitDescriptors2D(), n_jobs=-1)
X = transformer(smiles)
# Standardize features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Build linear model
model = Ridge(alpha=1.0)
scores = cross_val_score(model, X_scaled, y, cv=5, scoring='r2')
print(f"R² = {scores.mean():.3f} (+/- {scores.std():.3f})")
# Fit final model
model.fit(X_scaled, y)
# Interpret feature importance
feature_names = transformer.featurizer.columns
importance = np.abs(model.coef_)
top_features_idx = importance.argsort()[-10:][::-1]
print("Top 10 important features:")
for idx in top_features_idx:
print(f" {feature_names[idx]}: {model.coef_[idx]:.3f}")
```
### Similarity Search
```python
from molfeat.calc import FPCalculator
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# Query molecule
query_smiles = "CC(=O)Oc1ccccc1C(=O)O" # Aspirin
# Database of molecules
database_smiles = load_molecule_database() # Large collection
# Compute fingerprints
calc = FPCalculator("ecfp")
query_fp = calc(query_smiles).reshape(1, -1)
transformer = MoleculeTransformer(calc, n_jobs=-1)
database_fps = transformer(database_smiles)
# Compute similarity
similarities = cosine_similarity(query_fp, database_fps)[0]
# Find most similar
top_k = 10
top_indices = similarities.argsort()[-top_k:][::-1]
print(f"Top {top_k} similar molecules:")
for i, idx in enumerate(top_indices, 1):
print(f"{i}. {database_smiles[idx]} (similarity: {similarities[idx]:.3f})")
```
---
## Troubleshooting
### Handling Invalid Molecules
```python
# Use ignore_errors to skip invalid molecules
transformer = MoleculeTransformer(
FPCalculator("ecfp"),
ignore_errors=True,
verbose=True
)
# Filter out None values after transformation
features = transformer(smiles_list)
valid_mask = [f is not None for f in features]
valid_features = [f for f in features if f is not None]
valid_smiles = [s for s, m in zip(smiles_list, valid_mask) if m]
```
### Memory Management for Large Datasets
```python
# Process in chunks for very large datasets
def featurize_in_chunks(smiles_list, transformer, chunk_size=10000):
all_features = []
for i in range(0, len(smiles_list), chunk_size):
chunk = smiles_list[i:i+chunk_size]
features = transformer(chunk)
all_features.append(features)
print(f"Processed {i+len(chunk)}/{len(smiles_list)}")
return np.vstack(all_features)
# Use with large dataset
features = featurize_in_chunks(large_smiles_list, transformer)
```
### Reproducibility
```python
import random
import numpy as np
import torch
# Set all random seeds
def set_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(42)
# Save exact configuration
transformer.to_state_yaml_file("config.yml")
# Document version
import molfeat
print(f"molfeat version: {molfeat.__version__}")
```