Initial commit
This commit is contained in:
230
skills/modal/references/scaling.md
Normal file
230
skills/modal/references/scaling.md
Normal file
@@ -0,0 +1,230 @@
|
||||
# Scaling Out on Modal
|
||||
|
||||
## Automatic Autoscaling
|
||||
|
||||
Every Modal Function corresponds to an autoscaling pool of containers. Modal's autoscaler:
|
||||
- Spins up containers when no capacity available
|
||||
- Spins down containers when resources idle
|
||||
- Scales to zero by default when no inputs to process
|
||||
|
||||
Autoscaling decisions are made quickly and frequently.
|
||||
|
||||
## Parallel Execution with `.map()`
|
||||
|
||||
Run function repeatedly with different inputs in parallel:
|
||||
|
||||
```python
|
||||
@app.function()
|
||||
def evaluate_model(x):
|
||||
return x ** 2
|
||||
|
||||
@app.local_entrypoint()
|
||||
def main():
|
||||
inputs = list(range(100))
|
||||
# Runs 100 inputs in parallel across containers
|
||||
for result in evaluate_model.map(inputs):
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Multiple Arguments with `.starmap()`
|
||||
|
||||
For functions with multiple arguments:
|
||||
|
||||
```python
|
||||
@app.function()
|
||||
def add(a, b):
|
||||
return a + b
|
||||
|
||||
@app.local_entrypoint()
|
||||
def main():
|
||||
results = list(add.starmap([(1, 2), (3, 4)]))
|
||||
# [3, 7]
|
||||
```
|
||||
|
||||
### Exception Handling
|
||||
|
||||
```python
|
||||
@app.function()
|
||||
def may_fail(a):
|
||||
if a == 2:
|
||||
raise Exception("error")
|
||||
return a ** 2
|
||||
|
||||
@app.local_entrypoint()
|
||||
def main():
|
||||
results = list(may_fail.map(
|
||||
range(3),
|
||||
return_exceptions=True,
|
||||
wrap_returned_exceptions=False
|
||||
))
|
||||
# [0, 1, Exception('error')]
|
||||
```
|
||||
|
||||
## Autoscaling Configuration
|
||||
|
||||
Configure autoscaler behavior with parameters:
|
||||
|
||||
```python
|
||||
@app.function(
|
||||
max_containers=100, # Upper limit on containers
|
||||
min_containers=2, # Keep warm even when inactive
|
||||
buffer_containers=5, # Maintain buffer while active
|
||||
scaledown_window=60, # Max idle time before scaling down (seconds)
|
||||
)
|
||||
def my_function():
|
||||
...
|
||||
```
|
||||
|
||||
Parameters:
|
||||
- **max_containers**: Upper limit on total containers
|
||||
- **min_containers**: Minimum kept warm even when inactive
|
||||
- **buffer_containers**: Buffer size while function active (additional inputs won't need to queue)
|
||||
- **scaledown_window**: Maximum idle duration before scale down (seconds)
|
||||
|
||||
Trade-offs:
|
||||
- Larger warm pool/buffer → Higher cost, lower latency
|
||||
- Longer scaledown window → Less churn for infrequent requests
|
||||
|
||||
## Dynamic Autoscaler Updates
|
||||
|
||||
Update autoscaler settings without redeployment:
|
||||
|
||||
```python
|
||||
f = modal.Function.from_name("my-app", "f")
|
||||
f.update_autoscaler(max_containers=100)
|
||||
```
|
||||
|
||||
Settings revert to decorator configuration on next deploy, or are overridden by further updates:
|
||||
|
||||
```python
|
||||
f.update_autoscaler(min_containers=2, max_containers=10)
|
||||
f.update_autoscaler(min_containers=4) # max_containers=10 still in effect
|
||||
```
|
||||
|
||||
### Time-Based Scaling
|
||||
|
||||
Adjust warm pool based on time of day:
|
||||
|
||||
```python
|
||||
@app.function()
|
||||
def inference_server():
|
||||
...
|
||||
|
||||
@app.function(schedule=modal.Cron("0 6 * * *", timezone="America/New_York"))
|
||||
def increase_warm_pool():
|
||||
inference_server.update_autoscaler(min_containers=4)
|
||||
|
||||
@app.function(schedule=modal.Cron("0 22 * * *", timezone="America/New_York"))
|
||||
def decrease_warm_pool():
|
||||
inference_server.update_autoscaler(min_containers=0)
|
||||
```
|
||||
|
||||
### For Classes
|
||||
|
||||
Update autoscaler for specific parameter instances:
|
||||
|
||||
```python
|
||||
MyClass = modal.Cls.from_name("my-app", "MyClass")
|
||||
obj = MyClass(model_version="3.5")
|
||||
obj.update_autoscaler(buffer_containers=2) # type: ignore
|
||||
```
|
||||
|
||||
## Input Concurrency
|
||||
|
||||
Process multiple inputs per container with `@modal.concurrent`:
|
||||
|
||||
```python
|
||||
@app.function()
|
||||
@modal.concurrent(max_inputs=100)
|
||||
def my_function(input: str):
|
||||
# Container can handle up to 100 concurrent inputs
|
||||
...
|
||||
```
|
||||
|
||||
Ideal for I/O-bound workloads:
|
||||
- Database queries
|
||||
- External API requests
|
||||
- Remote Modal Function calls
|
||||
|
||||
### Concurrency Mechanisms
|
||||
|
||||
**Synchronous Functions**: Separate threads (must be thread-safe)
|
||||
|
||||
```python
|
||||
@app.function()
|
||||
@modal.concurrent(max_inputs=10)
|
||||
def sync_function():
|
||||
time.sleep(1) # Must be thread-safe
|
||||
```
|
||||
|
||||
**Async Functions**: Separate asyncio tasks (must not block event loop)
|
||||
|
||||
```python
|
||||
@app.function()
|
||||
@modal.concurrent(max_inputs=10)
|
||||
async def async_function():
|
||||
await asyncio.sleep(1) # Must not block event loop
|
||||
```
|
||||
|
||||
### Target vs Max Inputs
|
||||
|
||||
```python
|
||||
@app.function()
|
||||
@modal.concurrent(
|
||||
max_inputs=120, # Hard limit
|
||||
target_inputs=100 # Autoscaler target
|
||||
)
|
||||
def my_function(input: str):
|
||||
# Allow 20% burst above target
|
||||
...
|
||||
```
|
||||
|
||||
Autoscaler aims for `target_inputs`, but containers can burst to `max_inputs` during scale-up.
|
||||
|
||||
## Scaling Limits
|
||||
|
||||
Modal enforces limits per function:
|
||||
- 2,000 pending inputs (not yet assigned to containers)
|
||||
- 25,000 total inputs (running + pending)
|
||||
|
||||
For `.spawn()` async jobs: up to 1 million pending inputs.
|
||||
|
||||
Exceeding limits returns `Resource Exhausted` error - retry later.
|
||||
|
||||
Each `.map()` invocation: max 1,000 concurrent inputs.
|
||||
|
||||
## Async Usage
|
||||
|
||||
Use async APIs for arbitrary parallel execution patterns:
|
||||
|
||||
```python
|
||||
@app.function()
|
||||
async def async_task(x):
|
||||
await asyncio.sleep(1)
|
||||
return x * 2
|
||||
|
||||
@app.local_entrypoint()
|
||||
async def main():
|
||||
tasks = [async_task.remote.aio(i) for i in range(100)]
|
||||
results = await asyncio.gather(*tasks)
|
||||
```
|
||||
|
||||
## Common Gotchas
|
||||
|
||||
**Incorrect**: Using Python's builtin map (runs sequentially)
|
||||
```python
|
||||
# DON'T DO THIS
|
||||
results = map(evaluate_model, inputs)
|
||||
```
|
||||
|
||||
**Incorrect**: Calling function first
|
||||
```python
|
||||
# DON'T DO THIS
|
||||
results = evaluate_model(inputs).map()
|
||||
```
|
||||
|
||||
**Correct**: Call .map() on Modal function object
|
||||
```python
|
||||
# DO THIS
|
||||
results = evaluate_model.map(inputs)
|
||||
```
|
||||
Reference in New Issue
Block a user