Initial commit
This commit is contained in:
168
skills/modal/references/gpu.md
Normal file
168
skills/modal/references/gpu.md
Normal file
@@ -0,0 +1,168 @@
|
||||
# GPU Acceleration on Modal
|
||||
|
||||
## Quick Start
|
||||
|
||||
Run functions on GPUs with the `gpu` parameter:
|
||||
|
||||
```python
|
||||
import modal
|
||||
|
||||
image = modal.Image.debian_slim().pip_install("torch")
|
||||
app = modal.App(image=image)
|
||||
|
||||
@app.function(gpu="A100")
|
||||
def run():
|
||||
import torch
|
||||
assert torch.cuda.is_available()
|
||||
```
|
||||
|
||||
## Available GPU Types
|
||||
|
||||
Modal supports the following GPUs:
|
||||
|
||||
- `T4` - Entry-level GPU
|
||||
- `L4` - Balanced performance and cost
|
||||
- `A10` - Up to 4 GPUs, 96 GB total
|
||||
- `A100` - 40GB or 80GB variants
|
||||
- `A100-40GB` - Specific 40GB variant
|
||||
- `A100-80GB` - Specific 80GB variant
|
||||
- `L40S` - 48 GB, excellent for inference
|
||||
- `H100` / `H100!` - Top-tier Hopper architecture
|
||||
- `H200` - Improved Hopper with more memory
|
||||
- `B200` - Latest Blackwell architecture
|
||||
|
||||
See https://modal.com/pricing for pricing.
|
||||
|
||||
## GPU Count
|
||||
|
||||
Request multiple GPUs per container with `:n` syntax:
|
||||
|
||||
```python
|
||||
@app.function(gpu="H100:8")
|
||||
def run_llama_405b():
|
||||
# 8 H100 GPUs available
|
||||
...
|
||||
```
|
||||
|
||||
Supported counts:
|
||||
- B200, H200, H100, A100, L4, T4, L40S: up to 8 GPUs (up to 1,536 GB)
|
||||
- A10: up to 4 GPUs (up to 96 GB)
|
||||
|
||||
Note: Requesting >2 GPUs may result in longer wait times.
|
||||
|
||||
## GPU Selection Guide
|
||||
|
||||
**For Inference (Recommended)**: Start with L40S
|
||||
- Excellent cost/performance
|
||||
- 48 GB memory
|
||||
- Good for LLaMA, Stable Diffusion, etc.
|
||||
|
||||
**For Training**: Consider H100 or A100
|
||||
- High compute throughput
|
||||
- Large memory for batch processing
|
||||
|
||||
**For Memory-Bound Tasks**: H200 or A100-80GB
|
||||
- More memory capacity
|
||||
- Better for large models
|
||||
|
||||
## B200 GPUs
|
||||
|
||||
NVIDIA's flagship Blackwell chip:
|
||||
|
||||
```python
|
||||
@app.function(gpu="B200:8")
|
||||
def run_deepseek():
|
||||
# Most powerful option
|
||||
...
|
||||
```
|
||||
|
||||
## H200 and H100 GPUs
|
||||
|
||||
Hopper architecture GPUs with excellent software support:
|
||||
|
||||
```python
|
||||
@app.function(gpu="H100")
|
||||
def train():
|
||||
...
|
||||
```
|
||||
|
||||
### Automatic H200 Upgrades
|
||||
|
||||
Modal may upgrade `gpu="H100"` to H200 at no extra cost. H200 provides:
|
||||
- 141 GB memory (vs 80 GB for H100)
|
||||
- 4.8 TB/s bandwidth (vs 3.35 TB/s)
|
||||
|
||||
To avoid automatic upgrades (e.g., for benchmarking):
|
||||
```python
|
||||
@app.function(gpu="H100!")
|
||||
def benchmark():
|
||||
...
|
||||
```
|
||||
|
||||
## A100 GPUs
|
||||
|
||||
Ampere architecture with 40GB or 80GB variants:
|
||||
|
||||
```python
|
||||
# May be automatically upgraded to 80GB
|
||||
@app.function(gpu="A100")
|
||||
def qwen_7b():
|
||||
...
|
||||
|
||||
# Specific variants
|
||||
@app.function(gpu="A100-40GB")
|
||||
def model_40gb():
|
||||
...
|
||||
|
||||
@app.function(gpu="A100-80GB")
|
||||
def llama_70b():
|
||||
...
|
||||
```
|
||||
|
||||
## GPU Fallbacks
|
||||
|
||||
Specify multiple GPU types with fallback:
|
||||
|
||||
```python
|
||||
@app.function(gpu=["H100", "A100-40GB:2"])
|
||||
def run_on_80gb():
|
||||
# Tries H100 first, falls back to 2x A100-40GB
|
||||
...
|
||||
```
|
||||
|
||||
Modal respects ordering and allocates most preferred available GPU.
|
||||
|
||||
## Multi-GPU Training
|
||||
|
||||
Modal supports multi-GPU training on a single node. Multi-node training is in closed beta.
|
||||
|
||||
### PyTorch Example
|
||||
|
||||
For frameworks that re-execute entrypoints, use subprocess or specific strategies:
|
||||
|
||||
```python
|
||||
@app.function(gpu="A100:2")
|
||||
def train():
|
||||
import subprocess
|
||||
import sys
|
||||
subprocess.run(
|
||||
["python", "train.py"],
|
||||
stdout=sys.stdout,
|
||||
stderr=sys.stderr,
|
||||
check=True,
|
||||
)
|
||||
```
|
||||
|
||||
For PyTorch Lightning, set strategy to `ddp_spawn` or `ddp_notebook`.
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
**Memory-Bound vs Compute-Bound**:
|
||||
- Running models with small batch sizes is memory-bound
|
||||
- Newer GPUs have faster arithmetic than memory access
|
||||
- Speedup from newer hardware may not justify cost for memory-bound workloads
|
||||
|
||||
**Optimization**:
|
||||
- Use batching when possible
|
||||
- Consider L40S before jumping to H100/B200
|
||||
- Profile to identify bottlenecks
|
||||
Reference in New Issue
Block a user