Initial commit
This commit is contained in:
604
skills/medchem/references/rules_catalog.md
Normal file
604
skills/medchem/references/rules_catalog.md
Normal file
@@ -0,0 +1,604 @@
|
||||
# Medchem Rules and Filters Catalog
|
||||
|
||||
Comprehensive catalog of all available medicinal chemistry rules, structural alerts, and filters in medchem.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [Drug-Likeness Rules](#drug-likeness-rules)
|
||||
2. [Lead-Likeness Rules](#lead-likeness-rules)
|
||||
3. [Fragment Rules](#fragment-rules)
|
||||
4. [CNS Rules](#cns-rules)
|
||||
5. [Structural Alert Filters](#structural-alert-filters)
|
||||
6. [Chemical Group Patterns](#chemical-group-patterns)
|
||||
|
||||
---
|
||||
|
||||
## Drug-Likeness Rules
|
||||
|
||||
### Rule of Five (Lipinski)
|
||||
|
||||
**Reference:** Lipinski et al., Adv Drug Deliv Rev (1997) 23:3-25
|
||||
|
||||
**Purpose:** Predict oral bioavailability
|
||||
|
||||
**Criteria:**
|
||||
- Molecular Weight ≤ 500 Da
|
||||
- LogP ≤ 5
|
||||
- Hydrogen Bond Donors ≤ 5
|
||||
- Hydrogen Bond Acceptors ≤ 10
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.rule_of_five(mol)
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- One of the most widely used filters in drug discovery
|
||||
- About 90% of orally active drugs comply with these rules
|
||||
- Exceptions exist, especially for natural products and antibiotics
|
||||
|
||||
---
|
||||
|
||||
### Rule of Veber
|
||||
|
||||
**Reference:** Veber et al., J Med Chem (2002) 45:2615-2623
|
||||
|
||||
**Purpose:** Additional criteria for oral bioavailability
|
||||
|
||||
**Criteria:**
|
||||
- Rotatable Bonds ≤ 10
|
||||
- Topological Polar Surface Area (TPSA) ≤ 140 Ų
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.rule_of_veber(mol)
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- Complements Rule of Five
|
||||
- TPSA correlates with cell permeability
|
||||
- Rotatable bonds affect molecular flexibility
|
||||
|
||||
---
|
||||
|
||||
### Rule of Drug
|
||||
|
||||
**Purpose:** Combined drug-likeness assessment
|
||||
|
||||
**Criteria:**
|
||||
- Passes Rule of Five
|
||||
- Passes Veber rules
|
||||
- Does not contain PAINS substructures
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.rule_of_drug(mol)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### REOS (Rapid Elimination Of Swill)
|
||||
|
||||
**Reference:** Walters & Murcko, Adv Drug Deliv Rev (2002) 54:255-271
|
||||
|
||||
**Purpose:** Filter out compounds unlikely to be drugs
|
||||
|
||||
**Criteria:**
|
||||
- Molecular Weight: 200-500 Da
|
||||
- LogP: -5 to 5
|
||||
- Hydrogen Bond Donors: 0-5
|
||||
- Hydrogen Bond Acceptors: 0-10
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.rule_of_reos(mol)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Golden Triangle
|
||||
|
||||
**Reference:** Johnson et al., J Med Chem (2009) 52:5487-5500
|
||||
|
||||
**Purpose:** Balance lipophilicity and molecular weight
|
||||
|
||||
**Criteria:**
|
||||
- 200 ≤ MW ≤ 50 × LogP + 400
|
||||
- LogP: -2 to 5
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.golden_triangle(mol)
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- Defines optimal physicochemical space
|
||||
- Visual representation resembles a triangle on MW vs LogP plot
|
||||
|
||||
---
|
||||
|
||||
## Lead-Likeness Rules
|
||||
|
||||
### Rule of Oprea
|
||||
|
||||
**Reference:** Oprea et al., J Chem Inf Comput Sci (2001) 41:1308-1315
|
||||
|
||||
**Purpose:** Identify lead-like compounds for optimization
|
||||
|
||||
**Criteria:**
|
||||
- Molecular Weight: 200-350 Da
|
||||
- LogP: -2 to 4
|
||||
- Rotatable Bonds ≤ 7
|
||||
- Number of Rings ≤ 4
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.rule_of_oprea(mol)
|
||||
```
|
||||
|
||||
**Rationale:** Lead compounds should have "room to grow" during optimization
|
||||
|
||||
---
|
||||
|
||||
### Rule of Leadlike (Soft)
|
||||
|
||||
**Purpose:** Permissive lead-like criteria
|
||||
|
||||
**Criteria:**
|
||||
- Molecular Weight: 250-450 Da
|
||||
- LogP: -3 to 4
|
||||
- Rotatable Bonds ≤ 10
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.rule_of_leadlike_soft(mol)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Rule of Leadlike (Strict)
|
||||
|
||||
**Purpose:** Restrictive lead-like criteria
|
||||
|
||||
**Criteria:**
|
||||
- Molecular Weight: 200-350 Da
|
||||
- LogP: -2 to 3.5
|
||||
- Rotatable Bonds ≤ 7
|
||||
- Number of Rings: 1-3
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.rule_of_leadlike_strict(mol)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Fragment Rules
|
||||
|
||||
### Rule of Three
|
||||
|
||||
**Reference:** Congreve et al., Drug Discov Today (2003) 8:876-877
|
||||
|
||||
**Purpose:** Screen fragment libraries for fragment-based drug discovery
|
||||
|
||||
**Criteria:**
|
||||
- Molecular Weight ≤ 300 Da
|
||||
- LogP ≤ 3
|
||||
- Hydrogen Bond Donors ≤ 3
|
||||
- Hydrogen Bond Acceptors ≤ 3
|
||||
- Rotatable Bonds ≤ 3
|
||||
- Polar Surface Area ≤ 60 Ų
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.rule_of_three(mol)
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- Fragments are grown into leads during optimization
|
||||
- Lower complexity allows more starting points
|
||||
|
||||
---
|
||||
|
||||
## CNS Rules
|
||||
|
||||
### Rule of CNS
|
||||
|
||||
**Purpose:** Central nervous system drug-likeness
|
||||
|
||||
**Criteria:**
|
||||
- Molecular Weight ≤ 450 Da
|
||||
- LogP: -1 to 5
|
||||
- Hydrogen Bond Donors ≤ 2
|
||||
- TPSA ≤ 90 Ų
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.rule_of_cns(mol)
|
||||
```
|
||||
|
||||
**Rationale:**
|
||||
- Blood-brain barrier penetration requires specific properties
|
||||
- Lower TPSA and HBD count improve BBB permeability
|
||||
- Tight constraints reflect CNS challenges
|
||||
|
||||
---
|
||||
|
||||
## Structural Alert Filters
|
||||
|
||||
### PAINS (Pan Assay INterference compoundS)
|
||||
|
||||
**Reference:** Baell & Holloway, J Med Chem (2010) 53:2719-2740
|
||||
|
||||
**Purpose:** Identify compounds that interfere with assays
|
||||
|
||||
**Categories:**
|
||||
- Catechols
|
||||
- Quinones
|
||||
- Rhodanines
|
||||
- Hydroxyphenylhydrazones
|
||||
- Alkyl/aryl aldehydes
|
||||
- Michael acceptors (specific patterns)
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
mc.rules.basic_rules.pains_filter(mol)
|
||||
# Returns True if NO PAINS found
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- PAINS compounds show activity in multiple assays through non-specific mechanisms
|
||||
- Common false positives in screening campaigns
|
||||
- Should be deprioritized in lead selection
|
||||
|
||||
---
|
||||
|
||||
### Common Alerts Filters
|
||||
|
||||
**Source:** Derived from ChEMBL curation and medicinal chemistry literature
|
||||
|
||||
**Purpose:** Flag common problematic structural patterns
|
||||
|
||||
**Alert Categories:**
|
||||
1. **Reactive Groups**
|
||||
- Epoxides
|
||||
- Aziridines
|
||||
- Acid halides
|
||||
- Isocyanates
|
||||
|
||||
2. **Metabolic Liabilities**
|
||||
- Hydrazines
|
||||
- Thioureas
|
||||
- Anilines (certain patterns)
|
||||
|
||||
3. **Aggregators**
|
||||
- Polyaromatic systems
|
||||
- Long aliphatic chains
|
||||
|
||||
4. **Toxicophores**
|
||||
- Nitro aromatics
|
||||
- Aromatic N-oxides
|
||||
- Certain heterocycles
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
alert_filter = mc.structural.CommonAlertsFilters()
|
||||
has_alerts, details = alert_filter.check_mol(mol)
|
||||
```
|
||||
|
||||
**Return Format:**
|
||||
```python
|
||||
{
|
||||
"has_alerts": True,
|
||||
"alert_details": ["reactive_epoxide", "metabolic_hydrazine"],
|
||||
"num_alerts": 2
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### NIBR Filters
|
||||
|
||||
**Source:** Novartis Institutes for BioMedical Research
|
||||
|
||||
**Purpose:** Industrial medicinal chemistry filtering rules
|
||||
|
||||
**Features:**
|
||||
- Proprietary filter set developed from Novartis experience
|
||||
- Balances drug-likeness with practical medicinal chemistry
|
||||
- Includes both structural alerts and property filters
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
nibr_filter = mc.structural.NIBRFilters()
|
||||
results = nibr_filter(mols=mol_list, n_jobs=-1)
|
||||
```
|
||||
|
||||
**Return Format:** Boolean list (True = passes)
|
||||
|
||||
---
|
||||
|
||||
### Lilly Demerits Filter
|
||||
|
||||
**Reference:** Based on Eli Lilly medicinal chemistry rules
|
||||
|
||||
**Source:** 275 structural patterns accumulated over 18 years
|
||||
|
||||
**Purpose:** Identify assay interference and problematic functionalities
|
||||
|
||||
**Mechanism:**
|
||||
- Each matched pattern adds demerits
|
||||
- Molecules with >100 demerits are rejected
|
||||
- Some patterns add 10-50 demerits, others add 100+ (instant rejection)
|
||||
|
||||
**Demerit Categories:**
|
||||
|
||||
1. **High Demerits (>50):**
|
||||
- Known toxic groups
|
||||
- Highly reactive functionalities
|
||||
- Strong metal chelators
|
||||
|
||||
2. **Medium Demerits (20-50):**
|
||||
- Metabolic liabilities
|
||||
- Aggregation-prone structures
|
||||
- Frequent hitters
|
||||
|
||||
3. **Low Demerits (5-20):**
|
||||
- Minor concerns
|
||||
- Context-dependent issues
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
lilly_filter = mc.structural.LillyDemeritsFilters()
|
||||
results = lilly_filter(mols=mol_list, n_jobs=-1)
|
||||
```
|
||||
|
||||
**Return Format:**
|
||||
```python
|
||||
{
|
||||
"demerits": 35,
|
||||
"passes": True, # (demerits ≤ 100)
|
||||
"matched_patterns": [
|
||||
{"pattern": "phenolic_ester", "demerits": 20},
|
||||
{"pattern": "aniline_derivative", "demerits": 15}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Chemical Group Patterns
|
||||
|
||||
### Hinge Binders
|
||||
|
||||
**Purpose:** Identify kinase hinge-binding motifs
|
||||
|
||||
**Common Patterns:**
|
||||
- Aminopyridines
|
||||
- Aminopyrimidines
|
||||
- Indazoles
|
||||
- Benzimidazoles
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
group = mc.groups.ChemicalGroup(groups=["hinge_binders"])
|
||||
has_hinge = group.has_match(mol_list)
|
||||
```
|
||||
|
||||
**Application:** Kinase inhibitor design
|
||||
|
||||
---
|
||||
|
||||
### Phosphate Binders
|
||||
|
||||
**Purpose:** Identify phosphate-binding groups
|
||||
|
||||
**Common Patterns:**
|
||||
- Basic amines in specific geometries
|
||||
- Guanidinium groups
|
||||
- Arginine mimetics
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
group = mc.groups.ChemicalGroup(groups=["phosphate_binders"])
|
||||
```
|
||||
|
||||
**Application:** Kinase inhibitors, phosphatase inhibitors
|
||||
|
||||
---
|
||||
|
||||
### Michael Acceptors
|
||||
|
||||
**Purpose:** Identify electrophilic Michael acceptor groups
|
||||
|
||||
**Common Patterns:**
|
||||
- α,β-Unsaturated carbonyls
|
||||
- α,β-Unsaturated nitriles
|
||||
- Vinyl sulfones
|
||||
- Acrylamides
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
group = mc.groups.ChemicalGroup(groups=["michael_acceptors"])
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- Can be desirable for covalent inhibitors
|
||||
- Often flagged as reactive alerts in screening
|
||||
|
||||
---
|
||||
|
||||
### Reactive Groups
|
||||
|
||||
**Purpose:** Identify generally reactive functionalities
|
||||
|
||||
**Common Patterns:**
|
||||
- Epoxides
|
||||
- Aziridines
|
||||
- Acyl halides
|
||||
- Isocyanates
|
||||
- Sulfonyl chlorides
|
||||
|
||||
**Usage:**
|
||||
```python
|
||||
group = mc.groups.ChemicalGroup(groups=["reactive_groups"])
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Custom SMARTS Patterns
|
||||
|
||||
Define custom structural patterns using SMARTS:
|
||||
|
||||
```python
|
||||
custom_patterns = {
|
||||
"my_warhead": "[C;H0](=O)C(F)(F)F", # Trifluoromethyl ketone
|
||||
"my_scaffold": "c1ccc2c(c1)ncc(n2)N", # Aminobenzimidazole
|
||||
}
|
||||
|
||||
group = mc.groups.ChemicalGroup(
|
||||
groups=["hinge_binders"],
|
||||
custom_smarts=custom_patterns
|
||||
)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Filter Selection Guidelines
|
||||
|
||||
### Initial Screening (High-Throughput)
|
||||
|
||||
Recommended filters:
|
||||
- Rule of Five
|
||||
- PAINS filter
|
||||
- Common Alerts (permissive settings)
|
||||
|
||||
```python
|
||||
rfilter = mc.rules.RuleFilters(rule_list=["rule_of_five", "pains_filter"])
|
||||
alert_filter = mc.structural.CommonAlertsFilters()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Hit-to-Lead
|
||||
|
||||
Recommended filters:
|
||||
- Rule of Oprea or Leadlike (soft)
|
||||
- NIBR filters
|
||||
- Lilly Demerits
|
||||
|
||||
```python
|
||||
rfilter = mc.rules.RuleFilters(rule_list=["rule_of_oprea"])
|
||||
nibr_filter = mc.structural.NIBRFilters()
|
||||
lilly_filter = mc.structural.LillyDemeritsFilters()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Lead Optimization
|
||||
|
||||
Recommended filters:
|
||||
- Rule of Drug
|
||||
- Leadlike (strict)
|
||||
- Full structural alert analysis
|
||||
- Complexity filters
|
||||
|
||||
```python
|
||||
rfilter = mc.rules.RuleFilters(rule_list=["rule_of_drug", "rule_of_leadlike_strict"])
|
||||
alert_filter = mc.structural.CommonAlertsFilters()
|
||||
complexity_filter = mc.complexity.ComplexityFilter(max_complexity=400)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### CNS Targets
|
||||
|
||||
Recommended filters:
|
||||
- Rule of CNS
|
||||
- Reduced PAINS criteria (CNS-focused)
|
||||
- BBB permeability constraints
|
||||
|
||||
```python
|
||||
rfilter = mc.rules.RuleFilters(rule_list=["rule_of_cns"])
|
||||
constraints = mc.constraints.Constraints(
|
||||
tpsa_max=90,
|
||||
hbd_max=2,
|
||||
mw_range=(300, 450)
|
||||
)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Fragment-Based Drug Discovery
|
||||
|
||||
Recommended filters:
|
||||
- Rule of Three
|
||||
- Minimal complexity
|
||||
- Basic reactive group check
|
||||
|
||||
```python
|
||||
rfilter = mc.rules.RuleFilters(rule_list=["rule_of_three"])
|
||||
complexity_filter = mc.complexity.ComplexityFilter(max_complexity=250)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Important Considerations
|
||||
|
||||
### False Positives and False Negatives
|
||||
|
||||
**Filters are guidelines, not absolutes:**
|
||||
|
||||
1. **False Positives** (good drugs flagged):
|
||||
- ~10% of marketed drugs fail Rule of Five
|
||||
- Natural products often violate standard rules
|
||||
- Prodrugs intentionally break rules
|
||||
- Antibiotics and antivirals frequently non-compliant
|
||||
|
||||
2. **False Negatives** (bad compounds passing):
|
||||
- Passing filters doesn't guarantee success
|
||||
- Target-specific issues not captured
|
||||
- In vivo properties not fully predicted
|
||||
|
||||
### Context-Specific Application
|
||||
|
||||
**Different contexts require different criteria:**
|
||||
|
||||
- **Target Class:** Kinases vs GPCRs vs ion channels have different optimal spaces
|
||||
- **Modality:** Small molecules vs PROTACs vs molecular glues
|
||||
- **Administration Route:** Oral vs IV vs topical
|
||||
- **Disease Area:** CNS vs oncology vs infectious disease
|
||||
- **Stage:** Screening vs hit-to-lead vs lead optimization
|
||||
|
||||
### Complementing with Machine Learning
|
||||
|
||||
Modern approaches combine rules with ML:
|
||||
|
||||
```python
|
||||
# Rule-based pre-filtering
|
||||
rule_results = mc.rules.RuleFilters(rule_list=["rule_of_five"])(mols)
|
||||
filtered_mols = [mol for mol, r in zip(mols, rule_results) if r["passes"]]
|
||||
|
||||
# ML model scoring on filtered set
|
||||
ml_scores = ml_model.predict(filtered_mols)
|
||||
|
||||
# Combined decision
|
||||
final_candidates = [
|
||||
mol for mol, score in zip(filtered_mols, ml_scores)
|
||||
if score > threshold
|
||||
]
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## References
|
||||
|
||||
1. Lipinski CA et al. Adv Drug Deliv Rev (1997) 23:3-25
|
||||
2. Veber DF et al. J Med Chem (2002) 45:2615-2623
|
||||
3. Oprea TI et al. J Chem Inf Comput Sci (2001) 41:1308-1315
|
||||
4. Congreve M et al. Drug Discov Today (2003) 8:876-877
|
||||
5. Baell JB & Holloway GA. J Med Chem (2010) 53:2719-2740
|
||||
6. Johnson TW et al. J Med Chem (2009) 52:5487-5500
|
||||
7. Walters WP & Murcko MA. Adv Drug Deliv Rev (2002) 54:255-271
|
||||
8. Hann MM & Oprea TI. Curr Opin Chem Biol (2004) 8:255-263
|
||||
9. Rishton GM. Drug Discov Today (1997) 2:382-384
|
||||
Reference in New Issue
Block a user