Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

241
skills/markitdown/SKILL.md Normal file
View File

@@ -0,0 +1,241 @@
---
name: markitdown
description: Convert various file formats (PDF, Office documents, images, audio, web content, structured data) to Markdown optimized for LLM processing. Use when converting documents to markdown, extracting text from PDFs/Office files, transcribing audio, performing OCR on images, extracting YouTube transcripts, or processing batches of files. Supports 20+ formats including DOCX, XLSX, PPTX, PDF, HTML, EPUB, CSV, JSON, images with OCR, and audio with transcription.
---
# MarkItDown
## Overview
MarkItDown is a Python utility that converts various file formats into Markdown format, optimized for use with large language models and text analysis pipelines. It preserves document structure (headings, lists, tables, hyperlinks) while producing clean, token-efficient Markdown output.
## When to Use This Skill
Use this skill when users request:
- Converting documents to Markdown format
- Extracting text from PDF, Word, PowerPoint, or Excel files
- Performing OCR on images to extract text
- Transcribing audio files to text
- Extracting YouTube video transcripts
- Processing HTML, EPUB, or web content to Markdown
- Converting structured data (CSV, JSON, XML) to readable Markdown
- Batch converting multiple files or ZIP archives
- Preparing documents for LLM analysis or RAG systems
## Core Capabilities
### 1. Document Conversion
Convert Office documents and PDFs to Markdown while preserving structure.
**Supported formats:**
- PDF files (with optional Azure Document Intelligence integration)
- Word documents (DOCX)
- PowerPoint presentations (PPTX)
- Excel spreadsheets (XLSX, XLS)
**Basic usage:**
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("document.pdf")
print(result.text_content)
```
**Command-line:**
```bash
markitdown document.pdf -o output.md
```
See `references/document_conversion.md` for detailed documentation on document-specific features.
### 2. Media Processing
Extract text from images using OCR and transcribe audio files to text.
**Supported formats:**
- Images (JPEG, PNG, GIF, etc.) with EXIF metadata extraction
- Audio files with speech transcription (requires speech_recognition)
**Image with OCR:**
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("image.jpg")
print(result.text_content) # Includes EXIF metadata and OCR text
```
**Audio transcription:**
```python
result = md.convert("audio.wav")
print(result.text_content) # Transcribed speech
```
See `references/media_processing.md` for advanced media handling options.
### 3. Web Content Extraction
Convert web-based content and e-books to Markdown.
**Supported formats:**
- HTML files and web pages
- YouTube video transcripts (via URL)
- EPUB books
- RSS feeds
**YouTube transcript:**
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("https://youtube.com/watch?v=VIDEO_ID")
print(result.text_content)
```
See `references/web_content.md` for web extraction details.
### 4. Structured Data Handling
Convert structured data formats to readable Markdown tables.
**Supported formats:**
- CSV files
- JSON files
- XML files
**CSV to Markdown table:**
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("data.csv")
print(result.text_content) # Formatted as Markdown table
```
See `references/structured_data.md` for format-specific options.
### 5. Advanced Integrations
Enhance conversion quality with AI-powered features.
**Azure Document Intelligence:**
For enhanced PDF processing with better table extraction and layout analysis:
```python
from markitdown import MarkItDown
md = MarkItDown(docintel_endpoint="<endpoint>", docintel_key="<key>")
result = md.convert("complex.pdf")
```
**LLM-Powered Image Descriptions:**
Generate detailed image descriptions using GPT-4o:
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
result = md.convert("presentation.pptx") # Images described with LLM
```
See `references/advanced_integrations.md` for integration details.
### 6. Batch Processing
Process multiple files or entire ZIP archives at once.
**ZIP file processing:**
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("archive.zip")
print(result.text_content) # All files converted and concatenated
```
**Batch script:**
Use the provided batch processing script for directory conversion:
```bash
python scripts/batch_convert.py /path/to/documents /path/to/output
```
See `scripts/batch_convert.py` for implementation details.
## Installation
**Full installation (all features):**
```bash
uv pip install 'markitdown[all]'
```
**Modular installation (specific features):**
```bash
uv pip install 'markitdown[pdf]' # PDF support
uv pip install 'markitdown[docx]' # Word support
uv pip install 'markitdown[pptx]' # PowerPoint support
uv pip install 'markitdown[xlsx]' # Excel support
uv pip install 'markitdown[audio]' # Audio transcription
uv pip install 'markitdown[youtube]' # YouTube transcripts
```
**Requirements:**
- Python 3.10 or higher
## Output Format
MarkItDown produces clean, token-efficient Markdown optimized for LLM consumption:
- Preserves headings, lists, and tables
- Maintains hyperlinks and formatting
- Includes metadata where relevant (EXIF, document properties)
- No temporary files created (streaming approach)
## Common Workflows
**Preparing documents for RAG:**
```python
from markitdown import MarkItDown
md = MarkItDown()
# Convert knowledge base documents
docs = ["manual.pdf", "guide.docx", "faq.html"]
markdown_content = []
for doc in docs:
result = md.convert(doc)
markdown_content.append(result.text_content)
# Now ready for embedding and indexing
```
**Document analysis pipeline:**
```bash
# Convert all PDFs in directory
for file in documents/*.pdf; do
markitdown "$file" -o "markdown/$(basename "$file" .pdf).md"
done
```
## Plugin System
MarkItDown supports extensible plugins for custom conversion logic. Plugins are disabled by default for security:
```python
from markitdown import MarkItDown
# Enable plugins if needed
md = MarkItDown(enable_plugins=True)
```
## Resources
This skill includes comprehensive reference documentation for each capability:
- **references/document_conversion.md** - Detailed PDF, DOCX, PPTX, XLSX conversion options
- **references/media_processing.md** - Image OCR and audio transcription details
- **references/web_content.md** - HTML, YouTube, and EPUB extraction
- **references/structured_data.md** - CSV, JSON, XML conversion formats
- **references/advanced_integrations.md** - Azure Document Intelligence and LLM integration
- **scripts/batch_convert.py** - Batch processing utility for directories

View File

@@ -0,0 +1,538 @@
# Advanced Integrations Reference
This document provides detailed information about advanced MarkItDown features including Azure Document Intelligence integration, LLM-powered descriptions, and plugin system.
## Azure Document Intelligence Integration
Azure Document Intelligence (formerly Form Recognizer) provides superior PDF processing with advanced table extraction and layout analysis.
### Setup
**Prerequisites:**
1. Azure subscription
2. Document Intelligence resource created in Azure
3. Endpoint URL and API key
**Create Azure Resource:**
```bash
# Using Azure CLI
az cognitiveservices account create \
--name my-doc-intelligence \
--resource-group my-resource-group \
--kind FormRecognizer \
--sku F0 \
--location eastus
```
### Basic Usage
```python
from markitdown import MarkItDown
md = MarkItDown(
docintel_endpoint="https://YOUR-RESOURCE.cognitiveservices.azure.com/",
docintel_key="YOUR-API-KEY"
)
result = md.convert("complex_document.pdf")
print(result.text_content)
```
### Configuration from Environment Variables
```python
import os
from markitdown import MarkItDown
# Set environment variables
os.environ['AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT'] = 'YOUR-ENDPOINT'
os.environ['AZURE_DOCUMENT_INTELLIGENCE_KEY'] = 'YOUR-KEY'
# Use without explicit credentials
md = MarkItDown(
docintel_endpoint=os.getenv('AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT'),
docintel_key=os.getenv('AZURE_DOCUMENT_INTELLIGENCE_KEY')
)
result = md.convert("document.pdf")
```
### When to Use Azure Document Intelligence
**Use for:**
- Complex PDFs with sophisticated tables
- Multi-column layouts
- Forms and structured documents
- Scanned documents requiring OCR
- PDFs with mixed content types
- Documents with intricate formatting
**Benefits over standard extraction:**
- **Superior table extraction** - Better handling of merged cells, complex layouts
- **Layout analysis** - Understands document structure (headers, footers, columns)
- **Form fields** - Extracts key-value pairs from forms
- **Reading order** - Maintains correct text flow in complex layouts
- **OCR quality** - High-quality text extraction from scanned documents
### Comparison Example
**Standard extraction:**
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("complex_table.pdf")
# May struggle with complex tables
```
**Azure Document Intelligence:**
```python
from markitdown import MarkItDown
md = MarkItDown(
docintel_endpoint="YOUR-ENDPOINT",
docintel_key="YOUR-KEY"
)
result = md.convert("complex_table.pdf")
# Better table reconstruction and layout understanding
```
### Cost Considerations
Azure Document Intelligence is a paid service:
- **Free tier**: 500 pages per month
- **Paid tiers**: Pay per page processed
- Monitor usage to control costs
- Use standard extraction for simple documents
### Error Handling
```python
from markitdown import MarkItDown
md = MarkItDown(
docintel_endpoint="YOUR-ENDPOINT",
docintel_key="YOUR-KEY"
)
try:
result = md.convert("document.pdf")
print(result.text_content)
except Exception as e:
print(f"Document Intelligence error: {e}")
# Common issues: authentication, quota exceeded, unsupported file
```
## LLM-Powered Image Descriptions
Generate detailed, contextual descriptions for images using large language models.
### Setup with OpenAI
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI(api_key="YOUR-OPENAI-API-KEY")
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
result = md.convert("image.jpg")
print(result.text_content)
```
### Supported Use Cases
**Images in documents:**
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
# PowerPoint with images
result = md.convert("presentation.pptx")
# Word documents with images
result = md.convert("report.docx")
# Standalone images
result = md.convert("diagram.png")
```
### Custom Prompts
Customize the LLM prompt for specific needs:
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
# For diagrams
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Analyze this diagram and explain all components, connections, and relationships in detail"
)
# For charts
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Describe this chart, including the type, axes, data points, trends, and key insights"
)
# For UI screenshots
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Describe this user interface screenshot, listing all UI elements, their layout, and functionality"
)
# For scientific figures
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Describe this scientific figure in detail, including methodology, results shown, and significance"
)
```
### Model Selection
**GPT-4o (Recommended):**
- Best vision capabilities
- High-quality descriptions
- Good at understanding context
- Higher cost per image
**GPT-4o-mini:**
- Lower cost alternative
- Good for simpler images
- Faster processing
- May miss subtle details
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
# High quality (more expensive)
md_quality = MarkItDown(llm_client=client, llm_model="gpt-4o")
# Budget option (less expensive)
md_budget = MarkItDown(llm_client=client, llm_model="gpt-4o-mini")
```
### Configuration from Environment
```python
import os
from markitdown import MarkItDown
from openai import OpenAI
# Set API key in environment
os.environ['OPENAI_API_KEY'] = 'YOUR-API-KEY'
client = OpenAI() # Uses env variable
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
```
### Alternative LLM Providers
**Anthropic Claude:**
```python
from markitdown import MarkItDown
from anthropic import Anthropic
# Note: Check current compatibility with MarkItDown
client = Anthropic(api_key="YOUR-API-KEY")
# May require adapter for MarkItDown compatibility
```
**Azure OpenAI:**
```python
from markitdown import MarkItDown
from openai import AzureOpenAI
client = AzureOpenAI(
api_key="YOUR-AZURE-KEY",
api_version="2024-02-01",
azure_endpoint="https://YOUR-RESOURCE.openai.azure.com"
)
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
```
### Cost Management
**Strategies to reduce LLM costs:**
1. **Selective processing:**
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
# Only use LLM for important documents
if is_important_document(file):
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
else:
md = MarkItDown() # Standard processing
result = md.convert(file)
```
2. **Image filtering:**
```python
# Pre-process to identify images that need descriptions
# Only use LLM for complex/important images
```
3. **Batch processing:**
```python
# Process multiple images in batches
# Monitor costs and set limits
```
4. **Model selection:**
```python
# Use gpt-4o-mini for simple images
# Reserve gpt-4o for complex visualizations
```
### Performance Considerations
**LLM processing adds latency:**
- Each image requires an API call
- Processing time: 1-5 seconds per image
- Network dependent
- Consider parallel processing for multiple images
**Batch optimization:**
```python
from markitdown import MarkItDown
from openai import OpenAI
import concurrent.futures
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
def process_image(image_path):
return md.convert(image_path)
# Process multiple images in parallel
images = ["img1.jpg", "img2.jpg", "img3.jpg"]
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
results = list(executor.map(process_image, images))
```
## Combined Advanced Features
### Azure Document Intelligence + LLM Descriptions
Combine both for maximum quality:
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
docintel_endpoint="YOUR-AZURE-ENDPOINT",
docintel_key="YOUR-AZURE-KEY"
)
# Best possible PDF conversion with image descriptions
result = md.convert("complex_report.pdf")
```
**Use cases:**
- Research papers with figures
- Business reports with charts
- Technical documentation with diagrams
- Presentations with visual data
### Smart Document Processing Pipeline
```python
from markitdown import MarkItDown
from openai import OpenAI
import os
def smart_convert(file_path):
"""Intelligently choose processing method based on file type."""
client = OpenAI()
ext = os.path.splitext(file_path)[1].lower()
# PDFs with complex tables: Use Azure
if ext == '.pdf':
md = MarkItDown(
docintel_endpoint=os.getenv('AZURE_ENDPOINT'),
docintel_key=os.getenv('AZURE_KEY')
)
# Documents/presentations with images: Use LLM
elif ext in ['.pptx', '.docx']:
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o"
)
# Simple formats: Standard processing
else:
md = MarkItDown()
return md.convert(file_path)
# Use it
result = smart_convert("document.pdf")
```
## Plugin System
MarkItDown supports custom plugins for extending functionality.
### Plugin Architecture
Plugins are disabled by default for security:
```python
from markitdown import MarkItDown
# Enable plugins
md = MarkItDown(enable_plugins=True)
```
### Creating Custom Plugins
**Plugin structure:**
```python
class CustomConverter:
"""Custom converter plugin for MarkItDown."""
def can_convert(self, file_path):
"""Check if this plugin can handle the file."""
return file_path.endswith('.custom')
def convert(self, file_path):
"""Convert file to Markdown."""
# Your conversion logic here
return {
'text_content': '# Converted Content\n\n...'
}
```
### Plugin Registration
```python
from markitdown import MarkItDown
md = MarkItDown(enable_plugins=True)
# Register custom plugin
md.register_plugin(CustomConverter())
# Use normally
result = md.convert("file.custom")
```
### Plugin Use Cases
**Custom formats:**
- Proprietary document formats
- Specialized scientific data formats
- Legacy file formats
**Enhanced processing:**
- Custom OCR engines
- Specialized table extraction
- Domain-specific parsing
**Integration:**
- Enterprise document systems
- Custom databases
- Specialized APIs
### Plugin Security
**Important security considerations:**
- Plugins run with full system access
- Only enable for trusted plugins
- Validate plugin code before use
- Disable plugins in production unless required
## Error Handling for Advanced Features
```python
from markitdown import MarkItDown
from openai import OpenAI
def robust_convert(file_path):
"""Convert with fallback strategies."""
try:
# Try with all advanced features
client = OpenAI()
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
docintel_endpoint=os.getenv('AZURE_ENDPOINT'),
docintel_key=os.getenv('AZURE_KEY')
)
return md.convert(file_path)
except Exception as azure_error:
print(f"Azure failed: {azure_error}")
try:
# Fallback: LLM only
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
return md.convert(file_path)
except Exception as llm_error:
print(f"LLM failed: {llm_error}")
# Final fallback: Standard processing
md = MarkItDown()
return md.convert(file_path)
# Use it
result = robust_convert("document.pdf")
```
## Best Practices
### Azure Document Intelligence
- Use for complex PDFs only (cost optimization)
- Monitor usage and costs
- Store credentials securely
- Handle quota limits gracefully
- Fall back to standard processing if needed
### LLM Integration
- Use appropriate models for task complexity
- Customize prompts for specific use cases
- Monitor API costs
- Implement rate limiting
- Cache results when possible
- Handle API errors gracefully
### Combined Features
- Test cost/quality tradeoffs
- Use selectively for important documents
- Implement intelligent routing
- Monitor performance and costs
- Have fallback strategies
### Security
- Store API keys securely (environment variables, secrets manager)
- Never commit credentials to code
- Disable plugins unless required
- Validate all inputs
- Use least privilege access

View File

@@ -0,0 +1,273 @@
# Document Conversion Reference
This document provides detailed information about converting Office documents and PDFs to Markdown using MarkItDown.
## PDF Files
PDF conversion extracts text, tables, and structure from PDF documents.
### Basic PDF Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("document.pdf")
print(result.text_content)
```
### PDF with Azure Document Intelligence
For complex PDFs with tables, forms, and sophisticated layouts, use Azure Document Intelligence for enhanced extraction:
```python
from markitdown import MarkItDown
md = MarkItDown(
docintel_endpoint="https://YOUR-ENDPOINT.cognitiveservices.azure.com/",
docintel_key="YOUR-API-KEY"
)
result = md.convert("complex_table.pdf")
print(result.text_content)
```
**Benefits of Azure Document Intelligence:**
- Superior table extraction and reconstruction
- Better handling of multi-column layouts
- Form field recognition
- Improved text ordering in complex documents
### PDF Handling Notes
- Scanned PDFs require OCR (automatically handled if tesseract is installed)
- Password-protected PDFs are not supported
- Large PDFs may take longer to process
- Vector graphics and embedded images are extracted where possible
## Word Documents (DOCX)
Word document conversion preserves headings, paragraphs, lists, tables, and hyperlinks.
### Basic DOCX Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("document.docx")
print(result.text_content)
```
### DOCX Structure Preservation
MarkItDown preserves:
- **Headings** → Markdown headers (`#`, `##`, etc.)
- **Bold/Italic** → Markdown emphasis (`**bold**`, `*italic*`)
- **Lists** → Markdown lists (ordered and unordered)
- **Tables** → Markdown tables
- **Hyperlinks** → Markdown links `[text](url)`
- **Images** → Referenced with descriptions (can use LLM for descriptions)
### Command-Line Usage
```bash
# Basic conversion
markitdown report.docx -o report.md
# With output directory
markitdown report.docx -o output/report.md
```
### DOCX with Images
To generate descriptions for images in Word documents, use LLM integration:
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
result = md.convert("document_with_images.docx")
```
## PowerPoint Presentations (PPTX)
PowerPoint conversion extracts text from slides while preserving structure.
### Basic PPTX Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("presentation.pptx")
print(result.text_content)
```
### PPTX Structure
MarkItDown processes presentations as:
- Each slide becomes a major section
- Slide titles become headers
- Bullet points are preserved
- Tables are converted to Markdown tables
- Notes are included if present
### PPTX with Image Descriptions
Presentations often contain important visual information. Use LLM integration to describe images:
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Describe this slide image in detail, focusing on key information"
)
result = md.convert("presentation.pptx")
```
**Custom prompts for presentations:**
- "Describe charts and graphs with their key data points"
- "Explain diagrams and their relationships"
- "Summarize visual content for accessibility"
## Excel Spreadsheets (XLSX, XLS)
Excel conversion formats spreadsheet data as Markdown tables.
### Basic XLSX Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("data.xlsx")
print(result.text_content)
```
### Multi-Sheet Workbooks
For workbooks with multiple sheets:
- Each sheet becomes a separate section
- Sheet names are used as headers
- Empty sheets are skipped
- Formulas are evaluated (values shown, not formulas)
### XLSX Conversion Details
**What's preserved:**
- Cell values (text, numbers, dates)
- Table structure (rows and columns)
- Sheet names
- Cell formatting (bold headers)
**What's not preserved:**
- Formulas (only computed values)
- Charts and graphs (use LLM integration for descriptions)
- Cell colors and conditional formatting
- Comments and notes
### Large Spreadsheets
For large spreadsheets, consider:
- Processing may be slower for files with many rows/columns
- Very wide tables may not format well in Markdown
- Consider filtering or preprocessing data if possible
### XLS (Legacy Excel) Files
Legacy `.xls` files are supported but require additional dependencies:
```bash
pip install 'markitdown[xls]'
```
Then use normally:
```python
md = MarkItDown()
result = md.convert("legacy_data.xls")
```
## Common Document Conversion Patterns
### Batch Document Processing
```python
from markitdown import MarkItDown
import os
md = MarkItDown()
# Process all documents in a directory
for filename in os.listdir("documents"):
if filename.endswith(('.pdf', '.docx', '.pptx', '.xlsx')):
result = md.convert(f"documents/{filename}")
# Save to output directory
output_name = os.path.splitext(filename)[0] + ".md"
with open(f"markdown/{output_name}", "w") as f:
f.write(result.text_content)
```
### Document with Mixed Content
For documents containing multiple types of content (text, tables, images):
```python
from markitdown import MarkItDown
from openai import OpenAI
# Use LLM for image descriptions + Azure for complex tables
client = OpenAI()
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
docintel_endpoint="YOUR-ENDPOINT",
docintel_key="YOUR-KEY"
)
result = md.convert("complex_report.pdf")
```
### Error Handling
```python
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("document.pdf")
print(result.text_content)
except Exception as e:
print(f"Conversion failed: {e}")
# Handle specific errors (file not found, unsupported format, etc.)
```
## Output Quality Tips
**For best results:**
1. Use Azure Document Intelligence for PDFs with complex tables
2. Enable LLM descriptions for documents with important visual content
3. Ensure source documents are well-structured (proper headings, etc.)
4. For scanned documents, ensure good scan quality for OCR accuracy
5. Test with sample documents to verify output quality
## Performance Considerations
**Conversion speed depends on:**
- Document size and complexity
- Number of images (especially with LLM descriptions)
- Use of Azure Document Intelligence
- Available system resources
**Optimization tips:**
- Disable LLM integration if image descriptions aren't needed
- Use standard extraction (not Azure) for simple documents
- Process large batches in parallel when possible
- Consider streaming for very large documents

View File

@@ -0,0 +1,365 @@
# Media Processing Reference
This document provides detailed information about processing images and audio files with MarkItDown.
## Image Processing
MarkItDown can extract text from images using OCR and retrieve EXIF metadata.
### Basic Image Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("photo.jpg")
print(result.text_content)
```
### Image Processing Features
**What's extracted:**
1. **EXIF Metadata** - Camera settings, date, location, etc.
2. **OCR Text** - Text detected in the image (requires tesseract)
3. **Image Description** - AI-generated description (with LLM integration)
### EXIF Metadata Extraction
Images from cameras and smartphones contain EXIF metadata that's automatically extracted:
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("IMG_1234.jpg")
print(result.text_content)
```
**Example output includes:**
- Camera make and model
- Capture date and time
- GPS coordinates (if available)
- Exposure settings (ISO, shutter speed, aperture)
- Image dimensions
- Orientation
### OCR (Optical Character Recognition)
Extract text from images containing text (screenshots, scanned documents, photos of text):
**Requirements:**
- Install tesseract OCR engine:
```bash
# macOS
brew install tesseract
# Ubuntu/Debian
apt-get install tesseract-ocr
# Windows
# Download installer from https://github.com/UB-Mannheim/tesseract/wiki
```
**Usage:**
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("screenshot.png")
print(result.text_content) # Contains OCR'd text
```
**Best practices for OCR:**
- Use high-resolution images for better accuracy
- Ensure good contrast between text and background
- Straighten skewed text if possible
- Use well-lit, clear images
### LLM-Generated Image Descriptions
Generate detailed, contextual descriptions of images using GPT-4o or other vision models:
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
result = md.convert("diagram.png")
print(result.text_content)
```
**Custom prompts for specific needs:**
```python
# For diagrams
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Describe this diagram in detail, explaining all components and their relationships"
)
# For charts
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Analyze this chart and provide key data points and trends"
)
# For UI screenshots
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Describe this user interface, listing all visible elements and their layout"
)
```
### Supported Image Formats
MarkItDown supports all common image formats:
- JPEG/JPG
- PNG
- GIF
- BMP
- TIFF
- WebP
- HEIC (requires additional libraries on some platforms)
## Audio Processing
MarkItDown can transcribe audio files to text using speech recognition.
### Basic Audio Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("recording.wav")
print(result.text_content) # Transcribed speech
```
### Audio Transcription Setup
**Installation:**
```bash
pip install 'markitdown[audio]'
```
This installs the `speech_recognition` library and dependencies.
### Supported Audio Formats
- WAV
- AIFF
- FLAC
- MP3 (requires ffmpeg or libav)
- OGG (requires ffmpeg or libav)
- Other formats supported by speech_recognition
### Audio Transcription Engines
MarkItDown uses the `speech_recognition` library, which supports multiple backends:
**Default (Google Speech Recognition):**
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("audio.wav")
```
**Note:** Default Google Speech Recognition requires internet connection.
### Audio Quality Considerations
For best transcription accuracy:
- Use clear audio with minimal background noise
- Prefer WAV or FLAC for better quality
- Ensure speech is clear and at good volume
- Avoid multiple overlapping speakers
- Use mono audio when possible
### Audio Preprocessing Tips
For better results, consider preprocessing audio:
```python
# Example: If you have pydub installed
from pydub import AudioSegment
from pydub.effects import normalize
# Load and normalize audio
audio = AudioSegment.from_file("recording.mp3")
audio = normalize(audio)
audio.export("normalized.wav", format="wav")
# Then convert with MarkItDown
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("normalized.wav")
```
## Combined Media Workflows
### Processing Multiple Images in Batch
```python
from markitdown import MarkItDown
from openai import OpenAI
import os
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
# Process all images in directory
for filename in os.listdir("images"):
if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
result = md.convert(f"images/{filename}")
# Save markdown with same name
output = filename.rsplit('.', 1)[0] + '.md'
with open(f"output/{output}", "w") as f:
f.write(result.text_content)
```
### Screenshot Analysis Pipeline
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Describe this screenshot comprehensively, including UI elements, text, and layout"
)
screenshots = ["screen1.png", "screen2.png", "screen3.png"]
analysis = []
for screenshot in screenshots:
result = md.convert(screenshot)
analysis.append({
'file': screenshot,
'content': result.text_content
})
# Now ready for further processing
```
### Document Images with OCR
For scanned documents or photos of documents:
```python
from markitdown import MarkItDown
md = MarkItDown()
# Process scanned pages
pages = ["page1.jpg", "page2.jpg", "page3.jpg"]
full_text = []
for page in pages:
result = md.convert(page)
full_text.append(result.text_content)
# Combine into single document
document = "\n\n---\n\n".join(full_text)
print(document)
```
### Presentation Slide Images
When you have presentation slides as images:
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(
llm_client=client,
llm_model="gpt-4o",
llm_prompt="Describe this presentation slide, including title, bullet points, and visual elements"
)
# Process slide images
for i in range(1, 21): # 20 slides
result = md.convert(f"slides/slide_{i}.png")
print(f"## Slide {i}\n\n{result.text_content}\n\n")
```
## Error Handling
### Image Processing Errors
```python
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("image.jpg")
print(result.text_content)
except FileNotFoundError:
print("Image file not found")
except Exception as e:
print(f"Error processing image: {e}")
```
### Audio Processing Errors
```python
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("audio.mp3")
print(result.text_content)
except Exception as e:
print(f"Transcription failed: {e}")
# Common issues: format not supported, no speech detected, network error
```
## Performance Optimization
### Image Processing
- **LLM descriptions**: Slower but more informative
- **OCR only**: Faster for text extraction
- **EXIF only**: Fastest, metadata only
- **Batch processing**: Process multiple images in parallel
### Audio Processing
- **File size**: Larger files take longer
- **Audio length**: Transcription time scales with duration
- **Format conversion**: WAV/FLAC are faster than MP3/OGG
- **Network dependency**: Default transcription requires internet
## Use Cases
### Document Digitization
Convert scanned documents or photos of documents to searchable text.
### Meeting Notes
Transcribe audio recordings of meetings to text for analysis.
### Presentation Analysis
Extract content from presentation slide images.
### Screenshot Documentation
Generate descriptions of UI screenshots for documentation.
### Image Archiving
Extract metadata and content from photo collections.
### Accessibility
Generate alt-text descriptions for images using LLM integration.
### Data Extraction
OCR text from images containing tables, forms, or structured data.

View File

@@ -0,0 +1,575 @@
# Structured Data Handling Reference
This document provides detailed information about converting structured data formats (CSV, JSON, XML) to Markdown.
## CSV Files
Convert CSV (Comma-Separated Values) files to Markdown tables.
### Basic CSV Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("data.csv")
print(result.text_content)
```
### CSV to Markdown Table
CSV files are automatically converted to Markdown table format:
**Input CSV (`data.csv`):**
```csv
Name,Age,City
Alice,30,New York
Bob,25,Los Angeles
Charlie,35,Chicago
```
**Output Markdown:**
```markdown
| Name | Age | City |
|---------|-----|-------------|
| Alice | 30 | New York |
| Bob | 25 | Los Angeles |
| Charlie | 35 | Chicago |
```
### CSV Conversion Features
**What's preserved:**
- All column headers
- All data rows
- Cell values (text and numbers)
- Column structure
**Formatting:**
- Headers are bolded (Markdown table format)
- Columns are aligned
- Empty cells are preserved
- Special characters are escaped
### Large CSV Files
For large CSV files:
```python
from markitdown import MarkItDown
md = MarkItDown()
# Convert large CSV
result = md.convert("large_dataset.csv")
# Save to file instead of printing
with open("output.md", "w") as f:
f.write(result.text_content)
```
**Performance considerations:**
- Very large files may take time to process
- Consider previewing first few rows for testing
- Memory usage scales with file size
- Very wide tables may not display well in all Markdown viewers
### CSV with Special Characters
CSV files containing special characters are handled automatically:
```python
from markitdown import MarkItDown
md = MarkItDown()
# Handles UTF-8, special characters, quotes, etc.
result = md.convert("international_data.csv")
```
### CSV Delimiters
Standard CSV delimiters are supported:
- Comma (`,`) - standard
- Semicolon (`;`) - common in European formats
- Tab (`\t`) - TSV files
### Command-Line CSV Conversion
```bash
# Basic conversion
markitdown data.csv -o data.md
# Multiple CSV files
for file in *.csv; do
markitdown "$file" -o "${file%.csv}.md"
done
```
## JSON Files
Convert JSON data to readable Markdown format.
### Basic JSON Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("data.json")
print(result.text_content)
```
### JSON Formatting
JSON is converted to a readable, structured Markdown format:
**Input JSON (`config.json`):**
```json
{
"name": "MyApp",
"version": "1.0.0",
"dependencies": {
"library1": "^2.0.0",
"library2": "^3.1.0"
},
"features": ["auth", "api", "database"]
}
```
**Output Markdown:**
```markdown
## Configuration
**name:** MyApp
**version:** 1.0.0
### dependencies
- **library1:** ^2.0.0
- **library2:** ^3.1.0
### features
- auth
- api
- database
```
### JSON Array Handling
JSON arrays are converted to lists or tables:
**Array of objects:**
```json
[
{"id": 1, "name": "Alice", "active": true},
{"id": 2, "name": "Bob", "active": false}
]
```
**Converted to table:**
```markdown
| id | name | active |
|----|-------|--------|
| 1 | Alice | true |
| 2 | Bob | false |
```
### Nested JSON Structures
Nested JSON is converted with appropriate indentation and hierarchy:
```python
from markitdown import MarkItDown
md = MarkItDown()
# Handles deeply nested structures
result = md.convert("complex_config.json")
print(result.text_content)
```
### JSON Lines (JSONL)
For JSON Lines format (one JSON object per line):
```python
from markitdown import MarkItDown
import json
md = MarkItDown()
# Read JSONL file
with open("data.jsonl", "r") as f:
for line in f:
obj = json.loads(line)
# Convert to JSON temporarily
with open("temp.json", "w") as temp:
json.dump(obj, temp)
result = md.convert("temp.json")
print(result.text_content)
print("\n---\n")
```
### Large JSON Files
For large JSON files:
```python
from markitdown import MarkItDown
md = MarkItDown()
# Convert large JSON
result = md.convert("large_data.json")
# Save to file
with open("output.md", "w") as f:
f.write(result.text_content)
```
## XML Files
Convert XML documents to structured Markdown.
### Basic XML Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("data.xml")
print(result.text_content)
```
### XML Structure Preservation
XML is converted to Markdown maintaining hierarchical structure:
**Input XML (`book.xml`):**
```xml
<?xml version="1.0"?>
<book>
<title>Example Book</title>
<author>John Doe</author>
<chapters>
<chapter id="1">
<title>Introduction</title>
<content>Chapter 1 content...</content>
</chapter>
<chapter id="2">
<title>Background</title>
<content>Chapter 2 content...</content>
</chapter>
</chapters>
</book>
```
**Output Markdown:**
```markdown
# book
## title
Example Book
## author
John Doe
## chapters
### chapter (id: 1)
#### title
Introduction
#### content
Chapter 1 content...
### chapter (id: 2)
#### title
Background
#### content
Chapter 2 content...
```
### XML Attributes
XML attributes are preserved in the conversion:
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("data.xml")
# Attributes shown as (attr: value) in headings
```
### XML Namespaces
XML namespaces are handled:
```python
from markitdown import MarkItDown
md = MarkItDown()
# Handles xmlns and namespaced elements
result = md.convert("namespaced.xml")
```
### XML Use Cases
**Configuration files:**
- Convert XML configs to readable format
- Document system configurations
- Compare configuration files
**Data interchange:**
- Convert XML APIs responses
- Process XML data feeds
- Transform between formats
**Document processing:**
- Convert DocBook to Markdown
- Process SVG descriptions
- Extract structured data
## Structured Data Workflows
### CSV Data Analysis Pipeline
```python
from markitdown import MarkItDown
import pandas as pd
md = MarkItDown()
# Read CSV for analysis
df = pd.read_csv("data.csv")
# Do analysis
summary = df.describe()
# Convert both to Markdown
original = md.convert("data.csv")
# Save summary as CSV then convert
summary.to_csv("summary.csv")
summary_md = md.convert("summary.csv")
print("## Original Data\n")
print(original.text_content)
print("\n## Statistical Summary\n")
print(summary_md.text_content)
```
### JSON API Documentation
```python
from markitdown import MarkItDown
import requests
import json
md = MarkItDown()
# Fetch JSON from API
response = requests.get("https://api.example.com/data")
data = response.json()
# Save as JSON
with open("api_response.json", "w") as f:
json.dump(data, f, indent=2)
# Convert to Markdown
result = md.convert("api_response.json")
# Create documentation
doc = f"""# API Response Documentation
## Endpoint
GET https://api.example.com/data
## Response
{result.text_content}
"""
with open("api_docs.md", "w") as f:
f.write(doc)
```
### XML to Markdown Documentation
```python
from markitdown import MarkItDown
md = MarkItDown()
# Convert XML documentation
xml_files = ["config.xml", "schema.xml", "data.xml"]
for xml_file in xml_files:
result = md.convert(xml_file)
output_name = xml_file.replace('.xml', '.md')
with open(f"docs/{output_name}", "w") as f:
f.write(result.text_content)
```
### Multi-Format Data Processing
```python
from markitdown import MarkItDown
import os
md = MarkItDown()
def convert_structured_data(directory):
"""Convert all structured data files in directory."""
extensions = {'.csv', '.json', '.xml'}
for filename in os.listdir(directory):
ext = os.path.splitext(filename)[1]
if ext in extensions:
input_path = os.path.join(directory, filename)
result = md.convert(input_path)
# Save Markdown
output_name = filename.replace(ext, '.md')
output_path = os.path.join("markdown", output_name)
with open(output_path, 'w') as f:
f.write(result.text_content)
print(f"Converted: {filename}{output_name}")
# Process all structured data
convert_structured_data("data")
```
### CSV to JSON to Markdown
```python
import pandas as pd
from markitdown import MarkItDown
import json
md = MarkItDown()
# Read CSV
df = pd.read_csv("data.csv")
# Convert to JSON
json_data = df.to_dict(orient='records')
with open("temp.json", "w") as f:
json.dump(json_data, f, indent=2)
# Convert JSON to Markdown
result = md.convert("temp.json")
print(result.text_content)
```
### Database Export to Markdown
```python
from markitdown import MarkItDown
import sqlite3
import csv
md = MarkItDown()
# Export database query to CSV
conn = sqlite3.connect("database.db")
cursor = conn.execute("SELECT * FROM users")
with open("users.csv", "w", newline='') as f:
writer = csv.writer(f)
writer.writerow([description[0] for description in cursor.description])
writer.writerows(cursor.fetchall())
# Convert to Markdown
result = md.convert("users.csv")
print(result.text_content)
```
## Error Handling
### CSV Errors
```python
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("data.csv")
print(result.text_content)
except FileNotFoundError:
print("CSV file not found")
except Exception as e:
print(f"CSV conversion error: {e}")
# Common issues: encoding problems, malformed CSV, delimiter issues
```
### JSON Errors
```python
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("data.json")
print(result.text_content)
except Exception as e:
print(f"JSON conversion error: {e}")
# Common issues: invalid JSON syntax, encoding issues
```
### XML Errors
```python
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("data.xml")
print(result.text_content)
except Exception as e:
print(f"XML conversion error: {e}")
# Common issues: malformed XML, encoding problems, namespace issues
```
## Best Practices
### CSV Processing
- Check delimiter before conversion
- Verify encoding (UTF-8 recommended)
- Handle large files with streaming if needed
- Preview output for very wide tables
### JSON Processing
- Validate JSON before conversion
- Consider pretty-printing complex structures
- Handle circular references appropriately
- Be aware of large array performance
### XML Processing
- Validate XML structure first
- Handle namespaces consistently
- Consider XPath for selective extraction
- Be mindful of very deep nesting
### Data Quality
- Clean data before conversion when possible
- Handle missing values appropriately
- Verify special character handling
- Test with representative samples
### Performance
- Process large files in batches
- Use streaming for very large datasets
- Monitor memory usage
- Cache converted results when appropriate

View File

@@ -0,0 +1,478 @@
# Web Content Extraction Reference
This document provides detailed information about extracting content from HTML, YouTube, EPUB, and other web-based formats.
## HTML Conversion
Convert HTML files and web pages to clean Markdown format.
### Basic HTML Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("webpage.html")
print(result.text_content)
```
### HTML Processing Features
**What's preserved:**
- Headings (`<h1>``#`, `<h2>``##`, etc.)
- Paragraphs and text formatting
- Links (`<a>``[text](url)`)
- Lists (ordered and unordered)
- Tables → Markdown tables
- Code blocks and inline code
- Emphasis (bold, italic)
**What's removed:**
- Scripts and styles
- Navigation elements
- Advertising content
- Boilerplate markup
- HTML comments
### HTML from URLs
Convert web pages directly from URLs:
```python
from markitdown import MarkItDown
import requests
md = MarkItDown()
# Fetch and convert web page
response = requests.get("https://example.com/article")
with open("temp.html", "wb") as f:
f.write(response.content)
result = md.convert("temp.html")
print(result.text_content)
```
### Clean Web Article Extraction
For extracting main content from web articles:
```python
from markitdown import MarkItDown
import requests
from readability import Document # pip install readability-lxml
md = MarkItDown()
# Fetch page
url = "https://example.com/article"
response = requests.get(url)
# Extract main content
doc = Document(response.content)
html_content = doc.summary()
# Save and convert
with open("article.html", "w") as f:
f.write(html_content)
result = md.convert("article.html")
print(result.text_content)
```
### HTML with Images
HTML files containing images can be enhanced with LLM descriptions:
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
result = md.convert("page_with_images.html")
```
## YouTube Transcripts
Extract video transcripts from YouTube videos.
### Basic YouTube Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("https://www.youtube.com/watch?v=VIDEO_ID")
print(result.text_content)
```
### YouTube Installation
```bash
pip install 'markitdown[youtube]'
```
This installs the `youtube-transcript-api` dependency.
### YouTube URL Formats
MarkItDown supports various YouTube URL formats:
- `https://www.youtube.com/watch?v=VIDEO_ID`
- `https://youtu.be/VIDEO_ID`
- `https://www.youtube.com/embed/VIDEO_ID`
- `https://m.youtube.com/watch?v=VIDEO_ID`
### YouTube Transcript Features
**What's included:**
- Full video transcript text
- Timestamps (optional, depending on availability)
- Video metadata (title, description)
- Captions in available languages
**Transcript languages:**
```python
from markitdown import MarkItDown
md = MarkItDown()
# Get transcript in specific language (if available)
# Language codes: 'en', 'es', 'fr', 'de', etc.
result = md.convert("https://youtube.com/watch?v=VIDEO_ID")
```
### YouTube Playlist Processing
Process multiple videos from a playlist:
```python
from markitdown import MarkItDown
md = MarkItDown()
video_ids = [
"VIDEO_ID_1",
"VIDEO_ID_2",
"VIDEO_ID_3"
]
transcripts = []
for vid_id in video_ids:
url = f"https://youtube.com/watch?v={vid_id}"
result = md.convert(url)
transcripts.append({
'video_id': vid_id,
'transcript': result.text_content
})
```
### YouTube Use Cases
**Content Analysis:**
- Analyze video content without watching
- Extract key information from tutorials
- Build searchable transcript databases
**Research:**
- Process interview transcripts
- Extract lecture content
- Analyze presentation content
**Accessibility:**
- Generate text versions of video content
- Create searchable video archives
### YouTube Limitations
- Requires videos to have captions/transcripts available
- Auto-generated captions may have transcription errors
- Some videos may disable transcript access
- Rate limiting may apply for bulk processing
## EPUB Books
Convert EPUB e-books to Markdown format.
### Basic EPUB Conversion
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("book.epub")
print(result.text_content)
```
### EPUB Processing Features
**What's extracted:**
- Book text content
- Chapter structure
- Headings and formatting
- Tables of contents
- Footnotes and references
**What's preserved:**
- Heading hierarchy
- Text emphasis (bold, italic)
- Links and references
- Lists and tables
### EPUB with Images
EPUB files often contain images (covers, diagrams, illustrations):
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
result = md.convert("illustrated_book.epub")
```
### EPUB Use Cases
**Research:**
- Convert textbooks to searchable format
- Extract content for analysis
- Build digital libraries
**Content Processing:**
- Prepare books for LLM training data
- Convert to different formats
- Create summaries and extracts
**Accessibility:**
- Convert to more accessible formats
- Extract text for screen readers
- Process for text-to-speech
## RSS Feeds
Process RSS feeds to extract article content.
### Basic RSS Processing
```python
from markitdown import MarkItDown
import feedparser
md = MarkItDown()
# Parse RSS feed
feed = feedparser.parse("https://example.com/feed.xml")
# Convert each entry
for entry in feed.entries:
# Save entry HTML
with open("temp.html", "w") as f:
f.write(entry.summary)
result = md.convert("temp.html")
print(f"## {entry.title}\n\n{result.text_content}\n\n")
```
## Combined Web Content Workflows
### Web Scraping Pipeline
```python
from markitdown import MarkItDown
import requests
from bs4 import BeautifulSoup
md = MarkItDown()
def scrape_and_convert(url):
"""Scrape webpage and convert to Markdown."""
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
# Extract main content
main_content = soup.find('article') or soup.find('main')
if main_content:
# Save HTML
with open("temp.html", "w") as f:
f.write(str(main_content))
# Convert to Markdown
result = md.convert("temp.html")
return result.text_content
return None
# Use it
markdown = scrape_and_convert("https://example.com/article")
print(markdown)
```
### YouTube Learning Content Extraction
```python
from markitdown import MarkItDown
md = MarkItDown()
# Course videos
course_videos = [
("https://youtube.com/watch?v=ID1", "Lesson 1: Introduction"),
("https://youtube.com/watch?v=ID2", "Lesson 2: Basics"),
("https://youtube.com/watch?v=ID3", "Lesson 3: Advanced")
]
course_content = []
for url, title in course_videos:
result = md.convert(url)
course_content.append(f"# {title}\n\n{result.text_content}")
# Combine into course document
full_course = "\n\n---\n\n".join(course_content)
with open("course_transcript.md", "w") as f:
f.write(full_course)
```
### Documentation Scraping
```python
from markitdown import MarkItDown
import requests
from urllib.parse import urljoin, urlparse
md = MarkItDown()
def scrape_documentation(base_url, page_urls):
"""Scrape multiple documentation pages."""
docs = []
for page_url in page_urls:
full_url = urljoin(base_url, page_url)
# Fetch page
response = requests.get(full_url)
with open("temp.html", "wb") as f:
f.write(response.content)
# Convert
result = md.convert("temp.html")
docs.append({
'url': full_url,
'content': result.text_content
})
return docs
# Example usage
base = "https://docs.example.com/"
pages = ["intro.html", "getting-started.html", "api.html"]
documentation = scrape_documentation(base, pages)
```
### EPUB Library Processing
```python
from markitdown import MarkItDown
import os
md = MarkItDown()
def process_epub_library(library_path, output_path):
"""Convert all EPUB books in a directory."""
for filename in os.listdir(library_path):
if filename.endswith('.epub'):
epub_path = os.path.join(library_path, filename)
try:
result = md.convert(epub_path)
# Save markdown
output_file = filename.replace('.epub', '.md')
output_full = os.path.join(output_path, output_file)
with open(output_full, 'w') as f:
f.write(result.text_content)
print(f"Converted: {filename}")
except Exception as e:
print(f"Failed to convert {filename}: {e}")
# Process library
process_epub_library("books", "markdown_books")
```
## Error Handling
### HTML Conversion Errors
```python
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("webpage.html")
print(result.text_content)
except FileNotFoundError:
print("HTML file not found")
except Exception as e:
print(f"Conversion error: {e}")
```
### YouTube Transcript Errors
```python
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("https://youtube.com/watch?v=VIDEO_ID")
print(result.text_content)
except Exception as e:
print(f"Failed to get transcript: {e}")
# Common issues: No transcript available, video unavailable, network error
```
### EPUB Conversion Errors
```python
from markitdown import MarkItDown
md = MarkItDown()
try:
result = md.convert("book.epub")
print(result.text_content)
except Exception as e:
print(f"EPUB processing error: {e}")
# Common issues: Corrupted file, unsupported DRM, invalid format
```
## Best Practices
### HTML Processing
- Clean HTML before conversion for better results
- Use readability libraries to extract main content
- Handle different encodings appropriately
- Remove unnecessary markup
### YouTube Processing
- Check transcript availability before batch processing
- Handle API rate limits gracefully
- Store transcripts to avoid re-fetching
- Respect YouTube's terms of service
### EPUB Processing
- DRM-protected EPUBs cannot be processed
- Large EPUBs may require more memory
- Some formatting may not translate perfectly
- Test with representative samples first
### Web Scraping Ethics
- Respect robots.txt
- Add delays between requests
- Identify your scraper in User-Agent
- Cache results to minimize requests
- Follow website terms of service

View File

@@ -0,0 +1,317 @@
#!/usr/bin/env python3
"""
Batch conversion utility for MarkItDown.
Converts all supported files in a directory to Markdown format.
"""
import os
import sys
from pathlib import Path
from markitdown import MarkItDown
from typing import Optional, List
import argparse
# Supported file extensions
SUPPORTED_EXTENSIONS = {
'.pdf', '.docx', '.pptx', '.xlsx', '.xls',
'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff',
'.wav', '.mp3', '.flac', '.ogg', '.aiff',
'.html', '.htm', '.epub',
'.csv', '.json', '.xml',
'.zip'
}
def setup_markitdown(
use_llm: bool = False,
llm_model: str = "gpt-4o",
use_azure_di: bool = False,
azure_endpoint: Optional[str] = None,
azure_key: Optional[str] = None
) -> MarkItDown:
"""
Setup MarkItDown instance with optional advanced features.
Args:
use_llm: Enable LLM-powered image descriptions
llm_model: LLM model to use (default: gpt-4o)
use_azure_di: Enable Azure Document Intelligence
azure_endpoint: Azure Document Intelligence endpoint
azure_key: Azure Document Intelligence API key
Returns:
Configured MarkItDown instance
"""
kwargs = {}
if use_llm:
try:
from openai import OpenAI
client = OpenAI()
kwargs['llm_client'] = client
kwargs['llm_model'] = llm_model
print(f"✓ LLM integration enabled ({llm_model})")
except ImportError:
print("✗ Warning: OpenAI not installed, LLM features disabled")
print(" Install with: pip install openai")
if use_azure_di:
if azure_endpoint and azure_key:
kwargs['docintel_endpoint'] = azure_endpoint
kwargs['docintel_key'] = azure_key
print("✓ Azure Document Intelligence enabled")
else:
print("✗ Warning: Azure credentials not provided, Azure DI disabled")
return MarkItDown(**kwargs)
def convert_file(
md: MarkItDown,
input_path: Path,
output_dir: Path,
verbose: bool = False
) -> bool:
"""
Convert a single file to Markdown.
Args:
md: MarkItDown instance
input_path: Path to input file
output_dir: Directory for output files
verbose: Print detailed progress
Returns:
True if successful, False otherwise
"""
try:
if verbose:
print(f" Processing: {input_path.name}")
# Convert file
result = md.convert(str(input_path))
# Create output filename
output_filename = input_path.stem + '.md'
output_path = output_dir / output_filename
# Write output
with open(output_path, 'w', encoding='utf-8') as f:
f.write(result.text_content)
if verbose:
print(f" ✓ Converted: {input_path.name}{output_filename}")
return True
except Exception as e:
print(f" ✗ Error converting {input_path.name}: {e}")
return False
def find_files(input_dir: Path, recursive: bool = False) -> List[Path]:
"""
Find all supported files in directory.
Args:
input_dir: Directory to search
recursive: Search subdirectories
Returns:
List of file paths
"""
files = []
if recursive:
for ext in SUPPORTED_EXTENSIONS:
files.extend(input_dir.rglob(f"*{ext}"))
else:
for ext in SUPPORTED_EXTENSIONS:
files.extend(input_dir.glob(f"*{ext}"))
return sorted(files)
def batch_convert(
input_dir: str,
output_dir: str,
recursive: bool = False,
use_llm: bool = False,
llm_model: str = "gpt-4o",
use_azure_di: bool = False,
azure_endpoint: Optional[str] = None,
azure_key: Optional[str] = None,
verbose: bool = False
) -> None:
"""
Batch convert all supported files in a directory.
Args:
input_dir: Input directory containing files
output_dir: Output directory for Markdown files
recursive: Search subdirectories
use_llm: Enable LLM-powered descriptions
llm_model: LLM model to use
use_azure_di: Enable Azure Document Intelligence
azure_endpoint: Azure DI endpoint
azure_key: Azure DI API key
verbose: Print detailed progress
"""
input_path = Path(input_dir)
output_path = Path(output_dir)
# Validate input directory
if not input_path.exists():
print(f"✗ Error: Input directory '{input_dir}' does not exist")
sys.exit(1)
if not input_path.is_dir():
print(f"✗ Error: '{input_dir}' is not a directory")
sys.exit(1)
# Create output directory
output_path.mkdir(parents=True, exist_ok=True)
# Setup MarkItDown
print("Setting up MarkItDown...")
md = setup_markitdown(
use_llm=use_llm,
llm_model=llm_model,
use_azure_di=use_azure_di,
azure_endpoint=azure_endpoint,
azure_key=azure_key
)
# Find files
print(f"\nScanning directory: {input_dir}")
if recursive:
print(" (including subdirectories)")
files = find_files(input_path, recursive)
if not files:
print("✗ No supported files found")
print(f" Supported extensions: {', '.join(sorted(SUPPORTED_EXTENSIONS))}")
sys.exit(0)
print(f"✓ Found {len(files)} file(s) to convert\n")
# Convert files
successful = 0
failed = 0
for file_path in files:
if convert_file(md, file_path, output_path, verbose):
successful += 1
else:
failed += 1
# Summary
print(f"\n{'='*60}")
print(f"Conversion complete!")
print(f" Successful: {successful}")
print(f" Failed: {failed}")
print(f" Output: {output_dir}")
print(f"{'='*60}")
def main():
"""Main entry point."""
parser = argparse.ArgumentParser(
description="Batch convert files to Markdown using MarkItDown",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Basic usage
python batch_convert.py documents/ output/
# Recursive conversion
python batch_convert.py documents/ output/ --recursive
# With LLM-powered image descriptions
python batch_convert.py documents/ output/ --llm
# With Azure Document Intelligence
python batch_convert.py documents/ output/ --azure \\
--azure-endpoint https://example.cognitiveservices.azure.com/ \\
--azure-key YOUR-KEY
# All features enabled
python batch_convert.py documents/ output/ --llm --azure \\
--azure-endpoint $AZURE_ENDPOINT --azure-key $AZURE_KEY
Supported file types:
Documents: PDF, DOCX, PPTX, XLSX, XLS
Images: JPG, PNG, GIF, BMP, TIFF
Audio: WAV, MP3, FLAC, OGG, AIFF
Web: HTML, EPUB
Data: CSV, JSON, XML
Archives: ZIP
"""
)
parser.add_argument(
'input_dir',
help='Input directory containing files to convert'
)
parser.add_argument(
'output_dir',
help='Output directory for Markdown files'
)
parser.add_argument(
'-r', '--recursive',
action='store_true',
help='Recursively search subdirectories'
)
parser.add_argument(
'--llm',
action='store_true',
help='Enable LLM-powered image descriptions (requires OpenAI API key)'
)
parser.add_argument(
'--llm-model',
default='gpt-4o',
help='LLM model to use (default: gpt-4o)'
)
parser.add_argument(
'--azure',
action='store_true',
help='Enable Azure Document Intelligence for PDFs'
)
parser.add_argument(
'--azure-endpoint',
help='Azure Document Intelligence endpoint URL'
)
parser.add_argument(
'--azure-key',
help='Azure Document Intelligence API key'
)
parser.add_argument(
'-v', '--verbose',
action='store_true',
help='Print detailed progress'
)
args = parser.parse_args()
# Environment variable fallbacks for Azure
azure_endpoint = args.azure_endpoint or os.getenv('AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT')
azure_key = args.azure_key or os.getenv('AZURE_DOCUMENT_INTELLIGENCE_KEY')
batch_convert(
input_dir=args.input_dir,
output_dir=args.output_dir,
recursive=args.recursive,
use_llm=args.llm,
llm_model=args.llm_model,
use_azure_di=args.azure,
azure_endpoint=azure_endpoint,
azure_key=azure_key,
verbose=args.verbose
)
if __name__ == '__main__':
main()