Initial commit
This commit is contained in:
271
skills/get-available-resources/SKILL.md
Normal file
271
skills/get-available-resources/SKILL.md
Normal file
@@ -0,0 +1,271 @@
|
||||
---
|
||||
name: get-available-resources
|
||||
description: This skill should be used at the start of any computationally intensive scientific task to detect and report available system resources (CPU cores, GPUs, memory, disk space). It creates a JSON file with resource information and strategic recommendations that inform computational approach decisions such as whether to use parallel processing (joblib, multiprocessing), out-of-core computing (Dask, Zarr), GPU acceleration (PyTorch, JAX), or memory-efficient strategies. Use this skill before running analyses, training models, processing large datasets, or any task where resource constraints matter.
|
||||
---
|
||||
|
||||
# Get Available Resources
|
||||
|
||||
## Overview
|
||||
|
||||
Detect available computational resources and generate strategic recommendations for scientific computing tasks. This skill automatically identifies CPU capabilities, GPU availability (NVIDIA CUDA, AMD ROCm, Apple Silicon Metal), memory constraints, and disk space to help make informed decisions about computational approaches.
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
Use this skill proactively before any computationally intensive task:
|
||||
|
||||
- **Before data analysis**: Determine if datasets can be loaded into memory or require out-of-core processing
|
||||
- **Before model training**: Check if GPU acceleration is available and which backend to use
|
||||
- **Before parallel processing**: Identify optimal number of workers for joblib, multiprocessing, or Dask
|
||||
- **Before large file operations**: Verify sufficient disk space and appropriate storage strategies
|
||||
- **At project initialization**: Understand baseline capabilities for making architectural decisions
|
||||
|
||||
**Example scenarios:**
|
||||
- "Help me analyze this 50GB genomics dataset" → Use this skill first to determine if Dask/Zarr are needed
|
||||
- "Train a neural network on this data" → Use this skill to detect available GPUs and backends
|
||||
- "Process 10,000 files in parallel" → Use this skill to determine optimal worker count
|
||||
- "Run a computationally intensive simulation" → Use this skill to understand resource constraints
|
||||
|
||||
## How This Skill Works
|
||||
|
||||
### Resource Detection
|
||||
|
||||
The skill runs `scripts/detect_resources.py` to automatically detect:
|
||||
|
||||
1. **CPU Information**
|
||||
- Physical and logical core counts
|
||||
- Processor architecture and model
|
||||
- CPU frequency information
|
||||
|
||||
2. **GPU Information**
|
||||
- NVIDIA GPUs: Detects via nvidia-smi, reports VRAM, driver version, compute capability
|
||||
- AMD GPUs: Detects via rocm-smi
|
||||
- Apple Silicon: Detects M1/M2/M3/M4 chips with Metal support and unified memory
|
||||
|
||||
3. **Memory Information**
|
||||
- Total and available RAM
|
||||
- Current memory usage percentage
|
||||
- Swap space availability
|
||||
|
||||
4. **Disk Space Information**
|
||||
- Total and available disk space for working directory
|
||||
- Current usage percentage
|
||||
|
||||
5. **Operating System Information**
|
||||
- OS type (macOS, Linux, Windows)
|
||||
- OS version and release
|
||||
- Python version
|
||||
|
||||
### Output Format
|
||||
|
||||
The skill generates a `.claude_resources.json` file in the current working directory containing:
|
||||
|
||||
```json
|
||||
{
|
||||
"timestamp": "2025-10-23T10:30:00",
|
||||
"os": {
|
||||
"system": "Darwin",
|
||||
"release": "25.0.0",
|
||||
"machine": "arm64"
|
||||
},
|
||||
"cpu": {
|
||||
"physical_cores": 8,
|
||||
"logical_cores": 8,
|
||||
"architecture": "arm64"
|
||||
},
|
||||
"memory": {
|
||||
"total_gb": 16.0,
|
||||
"available_gb": 8.5,
|
||||
"percent_used": 46.9
|
||||
},
|
||||
"disk": {
|
||||
"total_gb": 500.0,
|
||||
"available_gb": 200.0,
|
||||
"percent_used": 60.0
|
||||
},
|
||||
"gpu": {
|
||||
"nvidia_gpus": [],
|
||||
"amd_gpus": [],
|
||||
"apple_silicon": {
|
||||
"name": "Apple M2",
|
||||
"type": "Apple Silicon",
|
||||
"backend": "Metal",
|
||||
"unified_memory": true
|
||||
},
|
||||
"total_gpus": 1,
|
||||
"available_backends": ["Metal"]
|
||||
},
|
||||
"recommendations": {
|
||||
"parallel_processing": {
|
||||
"strategy": "high_parallelism",
|
||||
"suggested_workers": 6,
|
||||
"libraries": ["joblib", "multiprocessing", "dask"]
|
||||
},
|
||||
"memory_strategy": {
|
||||
"strategy": "moderate_memory",
|
||||
"libraries": ["dask", "zarr"],
|
||||
"note": "Consider chunking for datasets > 2GB"
|
||||
},
|
||||
"gpu_acceleration": {
|
||||
"available": true,
|
||||
"backends": ["Metal"],
|
||||
"suggested_libraries": ["pytorch-mps", "tensorflow-metal", "jax-metal"]
|
||||
},
|
||||
"large_data_handling": {
|
||||
"strategy": "disk_abundant",
|
||||
"note": "Sufficient space for large intermediate files"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Strategic Recommendations
|
||||
|
||||
The skill generates context-aware recommendations:
|
||||
|
||||
**Parallel Processing Recommendations:**
|
||||
- **High parallelism (8+ cores)**: Use Dask, joblib, or multiprocessing with workers = cores - 2
|
||||
- **Moderate parallelism (4-7 cores)**: Use joblib or multiprocessing with workers = cores - 1
|
||||
- **Sequential (< 4 cores)**: Prefer sequential processing to avoid overhead
|
||||
|
||||
**Memory Strategy Recommendations:**
|
||||
- **Memory constrained (< 4GB available)**: Use Zarr, Dask, or H5py for out-of-core processing
|
||||
- **Moderate memory (4-16GB available)**: Use Dask/Zarr for datasets > 2GB
|
||||
- **Memory abundant (> 16GB available)**: Can load most datasets into memory directly
|
||||
|
||||
**GPU Acceleration Recommendations:**
|
||||
- **NVIDIA GPUs detected**: Use PyTorch, TensorFlow, JAX, CuPy, or RAPIDS
|
||||
- **AMD GPUs detected**: Use PyTorch-ROCm or TensorFlow-ROCm
|
||||
- **Apple Silicon detected**: Use PyTorch with MPS backend, TensorFlow-Metal, or JAX-Metal
|
||||
- **No GPU detected**: Use CPU-optimized libraries
|
||||
|
||||
**Large Data Handling Recommendations:**
|
||||
- **Disk constrained (< 10GB)**: Use streaming or compression strategies
|
||||
- **Moderate disk (10-100GB)**: Use Zarr, H5py, or Parquet formats
|
||||
- **Disk abundant (> 100GB)**: Can create large intermediate files freely
|
||||
|
||||
## Usage Instructions
|
||||
|
||||
### Step 1: Run Resource Detection
|
||||
|
||||
Execute the detection script at the start of any computationally intensive task:
|
||||
|
||||
```bash
|
||||
python scripts/detect_resources.py
|
||||
```
|
||||
|
||||
Optional arguments:
|
||||
- `-o, --output <path>`: Specify custom output path (default: `.claude_resources.json`)
|
||||
- `-v, --verbose`: Print full resource information to stdout
|
||||
|
||||
### Step 2: Read and Apply Recommendations
|
||||
|
||||
After running detection, read the generated `.claude_resources.json` file to inform computational decisions:
|
||||
|
||||
```python
|
||||
# Example: Use recommendations in code
|
||||
import json
|
||||
|
||||
with open('.claude_resources.json', 'r') as f:
|
||||
resources = json.load(f)
|
||||
|
||||
# Check parallel processing strategy
|
||||
if resources['recommendations']['parallel_processing']['strategy'] == 'high_parallelism':
|
||||
n_jobs = resources['recommendations']['parallel_processing']['suggested_workers']
|
||||
# Use joblib, Dask, or multiprocessing with n_jobs workers
|
||||
|
||||
# Check memory strategy
|
||||
if resources['recommendations']['memory_strategy']['strategy'] == 'memory_constrained':
|
||||
# Use Dask, Zarr, or H5py for out-of-core processing
|
||||
import dask.array as da
|
||||
# Load data in chunks
|
||||
|
||||
# Check GPU availability
|
||||
if resources['recommendations']['gpu_acceleration']['available']:
|
||||
backends = resources['recommendations']['gpu_acceleration']['backends']
|
||||
# Use appropriate GPU library based on available backend
|
||||
```
|
||||
|
||||
### Step 3: Make Informed Decisions
|
||||
|
||||
Use the resource information and recommendations to make strategic choices:
|
||||
|
||||
**For data loading:**
|
||||
```python
|
||||
memory_available_gb = resources['memory']['available_gb']
|
||||
dataset_size_gb = 10
|
||||
|
||||
if dataset_size_gb > memory_available_gb * 0.5:
|
||||
# Dataset is large relative to memory, use Dask
|
||||
import dask.dataframe as dd
|
||||
df = dd.read_csv('large_file.csv')
|
||||
else:
|
||||
# Dataset fits in memory, use pandas
|
||||
import pandas as pd
|
||||
df = pd.read_csv('large_file.csv')
|
||||
```
|
||||
|
||||
**For parallel processing:**
|
||||
```python
|
||||
from joblib import Parallel, delayed
|
||||
|
||||
n_jobs = resources['recommendations']['parallel_processing'].get('suggested_workers', 1)
|
||||
|
||||
results = Parallel(n_jobs=n_jobs)(
|
||||
delayed(process_function)(item) for item in data
|
||||
)
|
||||
```
|
||||
|
||||
**For GPU acceleration:**
|
||||
```python
|
||||
import torch
|
||||
|
||||
if 'CUDA' in resources['gpu']['available_backends']:
|
||||
device = torch.device('cuda')
|
||||
elif 'Metal' in resources['gpu']['available_backends']:
|
||||
device = torch.device('mps')
|
||||
else:
|
||||
device = torch.device('cpu')
|
||||
|
||||
model = model.to(device)
|
||||
```
|
||||
|
||||
## Dependencies
|
||||
|
||||
The detection script requires the following Python packages:
|
||||
|
||||
```bash
|
||||
uv pip install psutil
|
||||
```
|
||||
|
||||
All other functionality uses Python standard library modules (json, os, platform, subprocess, sys, pathlib).
|
||||
|
||||
## Platform Support
|
||||
|
||||
- **macOS**: Full support including Apple Silicon (M1/M2/M3/M4) GPU detection
|
||||
- **Linux**: Full support including NVIDIA (nvidia-smi) and AMD (rocm-smi) GPU detection
|
||||
- **Windows**: Full support including NVIDIA GPU detection
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Run early**: Execute resource detection at the start of projects or before major computational tasks
|
||||
2. **Re-run periodically**: System resources change over time (memory usage, disk space)
|
||||
3. **Check before scaling**: Verify resources before scaling up parallel workers or data sizes
|
||||
4. **Document decisions**: Keep the `.claude_resources.json` file in project directories to document resource-aware decisions
|
||||
5. **Use with versioning**: Different machines have different capabilities; resource files help maintain portability
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
**GPU not detected:**
|
||||
- Ensure GPU drivers are installed (nvidia-smi, rocm-smi, or system_profiler for Apple Silicon)
|
||||
- Check that GPU utilities are in system PATH
|
||||
- Verify GPU is not in use by other processes
|
||||
|
||||
**Script execution fails:**
|
||||
- Ensure psutil is installed: `uv pip install psutil`
|
||||
- Check Python version compatibility (Python 3.6+)
|
||||
- Verify script has execute permissions: `chmod +x scripts/detect_resources.py`
|
||||
|
||||
**Inaccurate memory readings:**
|
||||
- Memory readings are snapshots; actual available memory changes constantly
|
||||
- Close other applications before detection for accurate "available" memory
|
||||
- Consider running detection multiple times and averaging results
|
||||
401
skills/get-available-resources/scripts/detect_resources.py
Executable file
401
skills/get-available-resources/scripts/detect_resources.py
Executable file
@@ -0,0 +1,401 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
System Resource Detection Script
|
||||
|
||||
Detects available compute resources including CPU, GPU, memory, and disk space.
|
||||
Outputs a JSON file that Claude Code can use to make informed decisions about
|
||||
computational approaches (e.g., whether to use Dask, Zarr, Joblib, etc.).
|
||||
|
||||
Supports: macOS, Linux, Windows
|
||||
GPU Detection: NVIDIA (CUDA), AMD (ROCm), Apple Silicon (Metal)
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
import psutil
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Any, Optional
|
||||
|
||||
|
||||
def get_cpu_info() -> Dict[str, Any]:
|
||||
"""Detect CPU information."""
|
||||
cpu_info = {
|
||||
"physical_cores": psutil.cpu_count(logical=False),
|
||||
"logical_cores": psutil.cpu_count(logical=True),
|
||||
"max_frequency_mhz": None,
|
||||
"architecture": platform.machine(),
|
||||
"processor": platform.processor(),
|
||||
}
|
||||
|
||||
# Get CPU frequency if available
|
||||
try:
|
||||
freq = psutil.cpu_freq()
|
||||
if freq:
|
||||
cpu_info["max_frequency_mhz"] = freq.max
|
||||
cpu_info["current_frequency_mhz"] = freq.current
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return cpu_info
|
||||
|
||||
|
||||
def get_memory_info() -> Dict[str, Any]:
|
||||
"""Detect memory information."""
|
||||
mem = psutil.virtual_memory()
|
||||
swap = psutil.swap_memory()
|
||||
|
||||
return {
|
||||
"total_gb": round(mem.total / (1024**3), 2),
|
||||
"available_gb": round(mem.available / (1024**3), 2),
|
||||
"used_gb": round(mem.used / (1024**3), 2),
|
||||
"percent_used": mem.percent,
|
||||
"swap_total_gb": round(swap.total / (1024**3), 2),
|
||||
"swap_available_gb": round((swap.total - swap.used) / (1024**3), 2),
|
||||
}
|
||||
|
||||
|
||||
def get_disk_info(path: str = None) -> Dict[str, Any]:
|
||||
"""Detect disk space information for working directory or specified path."""
|
||||
if path is None:
|
||||
path = os.getcwd()
|
||||
|
||||
try:
|
||||
disk = psutil.disk_usage(path)
|
||||
return {
|
||||
"path": path,
|
||||
"total_gb": round(disk.total / (1024**3), 2),
|
||||
"available_gb": round(disk.free / (1024**3), 2),
|
||||
"used_gb": round(disk.used / (1024**3), 2),
|
||||
"percent_used": disk.percent,
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"path": path,
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
|
||||
def detect_nvidia_gpus() -> List[Dict[str, Any]]:
|
||||
"""Detect NVIDIA GPUs using nvidia-smi."""
|
||||
gpus = []
|
||||
|
||||
try:
|
||||
# Try to run nvidia-smi
|
||||
result = subprocess.run(
|
||||
["nvidia-smi", "--query-gpu=index,name,memory.total,memory.free,driver_version,compute_cap",
|
||||
"--format=csv,noheader,nounits"],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=5
|
||||
)
|
||||
|
||||
if result.returncode == 0:
|
||||
for line in result.stdout.strip().split('\n'):
|
||||
if line:
|
||||
parts = [p.strip() for p in line.split(',')]
|
||||
if len(parts) >= 6:
|
||||
gpus.append({
|
||||
"index": int(parts[0]),
|
||||
"name": parts[1],
|
||||
"memory_total_mb": float(parts[2]),
|
||||
"memory_free_mb": float(parts[3]),
|
||||
"driver_version": parts[4],
|
||||
"compute_capability": parts[5],
|
||||
"type": "NVIDIA",
|
||||
"backend": "CUDA"
|
||||
})
|
||||
except (subprocess.TimeoutExpired, FileNotFoundError, Exception):
|
||||
pass
|
||||
|
||||
return gpus
|
||||
|
||||
|
||||
def detect_amd_gpus() -> List[Dict[str, Any]]:
|
||||
"""Detect AMD GPUs using rocm-smi."""
|
||||
gpus = []
|
||||
|
||||
try:
|
||||
# Try to run rocm-smi
|
||||
result = subprocess.run(
|
||||
["rocm-smi", "--showid", "--showmeminfo", "vram"],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=5
|
||||
)
|
||||
|
||||
if result.returncode == 0:
|
||||
# Parse rocm-smi output (basic parsing, may need refinement)
|
||||
lines = result.stdout.strip().split('\n')
|
||||
gpu_index = 0
|
||||
for line in lines:
|
||||
if 'GPU' in line and 'DID' in line:
|
||||
gpus.append({
|
||||
"index": gpu_index,
|
||||
"name": "AMD GPU",
|
||||
"type": "AMD",
|
||||
"backend": "ROCm",
|
||||
"info": line.strip()
|
||||
})
|
||||
gpu_index += 1
|
||||
except (subprocess.TimeoutExpired, FileNotFoundError, Exception):
|
||||
pass
|
||||
|
||||
return gpus
|
||||
|
||||
|
||||
def detect_apple_silicon_gpu() -> Optional[Dict[str, Any]]:
|
||||
"""Detect Apple Silicon GPU (M1/M2/M3/etc.)."""
|
||||
if platform.system() != "Darwin":
|
||||
return None
|
||||
|
||||
try:
|
||||
# Check if running on Apple Silicon
|
||||
result = subprocess.run(
|
||||
["sysctl", "-n", "machdep.cpu.brand_string"],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=5
|
||||
)
|
||||
|
||||
cpu_brand = result.stdout.strip()
|
||||
|
||||
# Check for Apple Silicon (M1, M2, M3, etc.)
|
||||
if "Apple" in cpu_brand and any(chip in cpu_brand for chip in ["M1", "M2", "M3", "M4"]):
|
||||
# Get GPU core count if possible
|
||||
gpu_info = {
|
||||
"name": cpu_brand,
|
||||
"type": "Apple Silicon",
|
||||
"backend": "Metal",
|
||||
"unified_memory": True, # Apple Silicon uses unified memory
|
||||
}
|
||||
|
||||
# Try to get GPU core information
|
||||
try:
|
||||
result = subprocess.run(
|
||||
["system_profiler", "SPDisplaysDataType"],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=10
|
||||
)
|
||||
|
||||
# Parse GPU core info from system_profiler
|
||||
for line in result.stdout.split('\n'):
|
||||
if 'Chipset Model' in line:
|
||||
gpu_info["chipset"] = line.split(':')[1].strip()
|
||||
elif 'Total Number of Cores' in line:
|
||||
try:
|
||||
cores = line.split(':')[1].strip()
|
||||
gpu_info["gpu_cores"] = cores
|
||||
except:
|
||||
pass
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return gpu_info
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_gpu_info() -> Dict[str, Any]:
|
||||
"""Detect all available GPUs."""
|
||||
gpu_info = {
|
||||
"nvidia_gpus": detect_nvidia_gpus(),
|
||||
"amd_gpus": detect_amd_gpus(),
|
||||
"apple_silicon": detect_apple_silicon_gpu(),
|
||||
"total_gpus": 0,
|
||||
"available_backends": []
|
||||
}
|
||||
|
||||
# Count total GPUs and available backends
|
||||
if gpu_info["nvidia_gpus"]:
|
||||
gpu_info["total_gpus"] += len(gpu_info["nvidia_gpus"])
|
||||
gpu_info["available_backends"].append("CUDA")
|
||||
|
||||
if gpu_info["amd_gpus"]:
|
||||
gpu_info["total_gpus"] += len(gpu_info["amd_gpus"])
|
||||
gpu_info["available_backends"].append("ROCm")
|
||||
|
||||
if gpu_info["apple_silicon"]:
|
||||
gpu_info["total_gpus"] += 1
|
||||
gpu_info["available_backends"].append("Metal")
|
||||
|
||||
return gpu_info
|
||||
|
||||
|
||||
def get_os_info() -> Dict[str, Any]:
|
||||
"""Get operating system information."""
|
||||
return {
|
||||
"system": platform.system(),
|
||||
"release": platform.release(),
|
||||
"version": platform.version(),
|
||||
"machine": platform.machine(),
|
||||
"python_version": platform.python_version(),
|
||||
}
|
||||
|
||||
|
||||
def detect_all_resources(output_path: str = None) -> Dict[str, Any]:
|
||||
"""
|
||||
Detect all system resources and save to JSON.
|
||||
|
||||
Args:
|
||||
output_path: Optional path to save JSON. Defaults to .claude_resources.json in cwd.
|
||||
|
||||
Returns:
|
||||
Dictionary containing all resource information.
|
||||
"""
|
||||
if output_path is None:
|
||||
output_path = os.path.join(os.getcwd(), ".claude_resources.json")
|
||||
|
||||
resources = {
|
||||
"timestamp": __import__("datetime").datetime.now().isoformat(),
|
||||
"os": get_os_info(),
|
||||
"cpu": get_cpu_info(),
|
||||
"memory": get_memory_info(),
|
||||
"disk": get_disk_info(),
|
||||
"gpu": get_gpu_info(),
|
||||
}
|
||||
|
||||
# Add computational recommendations
|
||||
resources["recommendations"] = generate_recommendations(resources)
|
||||
|
||||
# Save to JSON file
|
||||
with open(output_path, 'w') as f:
|
||||
json.dump(resources, f, indent=2)
|
||||
|
||||
return resources
|
||||
|
||||
|
||||
def generate_recommendations(resources: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Generate computational approach recommendations based on available resources.
|
||||
"""
|
||||
recommendations = {
|
||||
"parallel_processing": {},
|
||||
"memory_strategy": {},
|
||||
"gpu_acceleration": {},
|
||||
"large_data_handling": {}
|
||||
}
|
||||
|
||||
# CPU recommendations
|
||||
cpu_cores = resources["cpu"]["logical_cores"]
|
||||
if cpu_cores >= 8:
|
||||
recommendations["parallel_processing"]["strategy"] = "high_parallelism"
|
||||
recommendations["parallel_processing"]["suggested_workers"] = max(cpu_cores - 2, 1)
|
||||
recommendations["parallel_processing"]["libraries"] = ["joblib", "multiprocessing", "dask"]
|
||||
elif cpu_cores >= 4:
|
||||
recommendations["parallel_processing"]["strategy"] = "moderate_parallelism"
|
||||
recommendations["parallel_processing"]["suggested_workers"] = max(cpu_cores - 1, 1)
|
||||
recommendations["parallel_processing"]["libraries"] = ["joblib", "multiprocessing"]
|
||||
else:
|
||||
recommendations["parallel_processing"]["strategy"] = "sequential"
|
||||
recommendations["parallel_processing"]["note"] = "Limited cores, prefer sequential processing"
|
||||
|
||||
# Memory recommendations
|
||||
available_memory_gb = resources["memory"]["available_gb"]
|
||||
total_memory_gb = resources["memory"]["total_gb"]
|
||||
|
||||
if available_memory_gb < 4:
|
||||
recommendations["memory_strategy"]["strategy"] = "memory_constrained"
|
||||
recommendations["memory_strategy"]["libraries"] = ["zarr", "dask", "h5py"]
|
||||
recommendations["memory_strategy"]["note"] = "Use out-of-core processing for large datasets"
|
||||
elif available_memory_gb < 16:
|
||||
recommendations["memory_strategy"]["strategy"] = "moderate_memory"
|
||||
recommendations["memory_strategy"]["libraries"] = ["dask", "zarr"]
|
||||
recommendations["memory_strategy"]["note"] = "Consider chunking for datasets > 2GB"
|
||||
else:
|
||||
recommendations["memory_strategy"]["strategy"] = "memory_abundant"
|
||||
recommendations["memory_strategy"]["note"] = "Can load most datasets into memory"
|
||||
|
||||
# GPU recommendations
|
||||
gpu_info = resources["gpu"]
|
||||
if gpu_info["total_gpus"] > 0:
|
||||
recommendations["gpu_acceleration"]["available"] = True
|
||||
recommendations["gpu_acceleration"]["backends"] = gpu_info["available_backends"]
|
||||
|
||||
if "CUDA" in gpu_info["available_backends"]:
|
||||
recommendations["gpu_acceleration"]["suggested_libraries"] = [
|
||||
"pytorch", "tensorflow", "jax", "cupy", "rapids"
|
||||
]
|
||||
elif "Metal" in gpu_info["available_backends"]:
|
||||
recommendations["gpu_acceleration"]["suggested_libraries"] = [
|
||||
"pytorch-mps", "tensorflow-metal", "jax-metal"
|
||||
]
|
||||
elif "ROCm" in gpu_info["available_backends"]:
|
||||
recommendations["gpu_acceleration"]["suggested_libraries"] = [
|
||||
"pytorch-rocm", "tensorflow-rocm"
|
||||
]
|
||||
else:
|
||||
recommendations["gpu_acceleration"]["available"] = False
|
||||
recommendations["gpu_acceleration"]["note"] = "No GPU detected, use CPU-based libraries"
|
||||
|
||||
# Large data handling recommendations
|
||||
disk_available_gb = resources["disk"]["available_gb"]
|
||||
if disk_available_gb < 10:
|
||||
recommendations["large_data_handling"]["strategy"] = "disk_constrained"
|
||||
recommendations["large_data_handling"]["note"] = "Limited disk space, use streaming or compression"
|
||||
elif disk_available_gb < 100:
|
||||
recommendations["large_data_handling"]["strategy"] = "moderate_disk"
|
||||
recommendations["large_data_handling"]["libraries"] = ["zarr", "h5py", "parquet"]
|
||||
else:
|
||||
recommendations["large_data_handling"]["strategy"] = "disk_abundant"
|
||||
recommendations["large_data_handling"]["note"] = "Sufficient space for large intermediate files"
|
||||
|
||||
return recommendations
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point for CLI usage."""
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Detect system resources for scientific computing"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-o", "--output",
|
||||
default=".claude_resources.json",
|
||||
help="Output JSON file path (default: .claude_resources.json)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-v", "--verbose",
|
||||
action="store_true",
|
||||
help="Print resources to stdout"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print("🔍 Detecting system resources...")
|
||||
resources = detect_all_resources(args.output)
|
||||
|
||||
print(f"✅ Resources detected and saved to: {args.output}")
|
||||
|
||||
if args.verbose:
|
||||
print("\n" + "="*60)
|
||||
print(json.dumps(resources, indent=2))
|
||||
print("="*60)
|
||||
|
||||
# Print summary
|
||||
print("\n📊 Resource Summary:")
|
||||
print(f" OS: {resources['os']['system']} {resources['os']['release']}")
|
||||
print(f" CPU: {resources['cpu']['logical_cores']} cores ({resources['cpu']['physical_cores']} physical)")
|
||||
print(f" Memory: {resources['memory']['total_gb']} GB total, {resources['memory']['available_gb']} GB available")
|
||||
print(f" Disk: {resources['disk']['total_gb']} GB total, {resources['disk']['available_gb']} GB available")
|
||||
|
||||
if resources['gpu']['total_gpus'] > 0:
|
||||
print(f" GPU: {resources['gpu']['total_gpus']} detected ({', '.join(resources['gpu']['available_backends'])})")
|
||||
else:
|
||||
print(" GPU: None detected")
|
||||
|
||||
print("\n💡 Recommendations:")
|
||||
recs = resources['recommendations']
|
||||
print(f" Parallel Processing: {recs['parallel_processing'].get('strategy', 'N/A')}")
|
||||
print(f" Memory Strategy: {recs['memory_strategy'].get('strategy', 'N/A')}")
|
||||
print(f" GPU Acceleration: {'Available' if recs['gpu_acceleration'].get('available') else 'Not Available'}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user