Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,271 @@
---
name: get-available-resources
description: This skill should be used at the start of any computationally intensive scientific task to detect and report available system resources (CPU cores, GPUs, memory, disk space). It creates a JSON file with resource information and strategic recommendations that inform computational approach decisions such as whether to use parallel processing (joblib, multiprocessing), out-of-core computing (Dask, Zarr), GPU acceleration (PyTorch, JAX), or memory-efficient strategies. Use this skill before running analyses, training models, processing large datasets, or any task where resource constraints matter.
---
# Get Available Resources
## Overview
Detect available computational resources and generate strategic recommendations for scientific computing tasks. This skill automatically identifies CPU capabilities, GPU availability (NVIDIA CUDA, AMD ROCm, Apple Silicon Metal), memory constraints, and disk space to help make informed decisions about computational approaches.
## When to Use This Skill
Use this skill proactively before any computationally intensive task:
- **Before data analysis**: Determine if datasets can be loaded into memory or require out-of-core processing
- **Before model training**: Check if GPU acceleration is available and which backend to use
- **Before parallel processing**: Identify optimal number of workers for joblib, multiprocessing, or Dask
- **Before large file operations**: Verify sufficient disk space and appropriate storage strategies
- **At project initialization**: Understand baseline capabilities for making architectural decisions
**Example scenarios:**
- "Help me analyze this 50GB genomics dataset" → Use this skill first to determine if Dask/Zarr are needed
- "Train a neural network on this data" → Use this skill to detect available GPUs and backends
- "Process 10,000 files in parallel" → Use this skill to determine optimal worker count
- "Run a computationally intensive simulation" → Use this skill to understand resource constraints
## How This Skill Works
### Resource Detection
The skill runs `scripts/detect_resources.py` to automatically detect:
1. **CPU Information**
- Physical and logical core counts
- Processor architecture and model
- CPU frequency information
2. **GPU Information**
- NVIDIA GPUs: Detects via nvidia-smi, reports VRAM, driver version, compute capability
- AMD GPUs: Detects via rocm-smi
- Apple Silicon: Detects M1/M2/M3/M4 chips with Metal support and unified memory
3. **Memory Information**
- Total and available RAM
- Current memory usage percentage
- Swap space availability
4. **Disk Space Information**
- Total and available disk space for working directory
- Current usage percentage
5. **Operating System Information**
- OS type (macOS, Linux, Windows)
- OS version and release
- Python version
### Output Format
The skill generates a `.claude_resources.json` file in the current working directory containing:
```json
{
"timestamp": "2025-10-23T10:30:00",
"os": {
"system": "Darwin",
"release": "25.0.0",
"machine": "arm64"
},
"cpu": {
"physical_cores": 8,
"logical_cores": 8,
"architecture": "arm64"
},
"memory": {
"total_gb": 16.0,
"available_gb": 8.5,
"percent_used": 46.9
},
"disk": {
"total_gb": 500.0,
"available_gb": 200.0,
"percent_used": 60.0
},
"gpu": {
"nvidia_gpus": [],
"amd_gpus": [],
"apple_silicon": {
"name": "Apple M2",
"type": "Apple Silicon",
"backend": "Metal",
"unified_memory": true
},
"total_gpus": 1,
"available_backends": ["Metal"]
},
"recommendations": {
"parallel_processing": {
"strategy": "high_parallelism",
"suggested_workers": 6,
"libraries": ["joblib", "multiprocessing", "dask"]
},
"memory_strategy": {
"strategy": "moderate_memory",
"libraries": ["dask", "zarr"],
"note": "Consider chunking for datasets > 2GB"
},
"gpu_acceleration": {
"available": true,
"backends": ["Metal"],
"suggested_libraries": ["pytorch-mps", "tensorflow-metal", "jax-metal"]
},
"large_data_handling": {
"strategy": "disk_abundant",
"note": "Sufficient space for large intermediate files"
}
}
}
```
### Strategic Recommendations
The skill generates context-aware recommendations:
**Parallel Processing Recommendations:**
- **High parallelism (8+ cores)**: Use Dask, joblib, or multiprocessing with workers = cores - 2
- **Moderate parallelism (4-7 cores)**: Use joblib or multiprocessing with workers = cores - 1
- **Sequential (< 4 cores)**: Prefer sequential processing to avoid overhead
**Memory Strategy Recommendations:**
- **Memory constrained (< 4GB available)**: Use Zarr, Dask, or H5py for out-of-core processing
- **Moderate memory (4-16GB available)**: Use Dask/Zarr for datasets > 2GB
- **Memory abundant (> 16GB available)**: Can load most datasets into memory directly
**GPU Acceleration Recommendations:**
- **NVIDIA GPUs detected**: Use PyTorch, TensorFlow, JAX, CuPy, or RAPIDS
- **AMD GPUs detected**: Use PyTorch-ROCm or TensorFlow-ROCm
- **Apple Silicon detected**: Use PyTorch with MPS backend, TensorFlow-Metal, or JAX-Metal
- **No GPU detected**: Use CPU-optimized libraries
**Large Data Handling Recommendations:**
- **Disk constrained (< 10GB)**: Use streaming or compression strategies
- **Moderate disk (10-100GB)**: Use Zarr, H5py, or Parquet formats
- **Disk abundant (> 100GB)**: Can create large intermediate files freely
## Usage Instructions
### Step 1: Run Resource Detection
Execute the detection script at the start of any computationally intensive task:
```bash
python scripts/detect_resources.py
```
Optional arguments:
- `-o, --output <path>`: Specify custom output path (default: `.claude_resources.json`)
- `-v, --verbose`: Print full resource information to stdout
### Step 2: Read and Apply Recommendations
After running detection, read the generated `.claude_resources.json` file to inform computational decisions:
```python
# Example: Use recommendations in code
import json
with open('.claude_resources.json', 'r') as f:
resources = json.load(f)
# Check parallel processing strategy
if resources['recommendations']['parallel_processing']['strategy'] == 'high_parallelism':
n_jobs = resources['recommendations']['parallel_processing']['suggested_workers']
# Use joblib, Dask, or multiprocessing with n_jobs workers
# Check memory strategy
if resources['recommendations']['memory_strategy']['strategy'] == 'memory_constrained':
# Use Dask, Zarr, or H5py for out-of-core processing
import dask.array as da
# Load data in chunks
# Check GPU availability
if resources['recommendations']['gpu_acceleration']['available']:
backends = resources['recommendations']['gpu_acceleration']['backends']
# Use appropriate GPU library based on available backend
```
### Step 3: Make Informed Decisions
Use the resource information and recommendations to make strategic choices:
**For data loading:**
```python
memory_available_gb = resources['memory']['available_gb']
dataset_size_gb = 10
if dataset_size_gb > memory_available_gb * 0.5:
# Dataset is large relative to memory, use Dask
import dask.dataframe as dd
df = dd.read_csv('large_file.csv')
else:
# Dataset fits in memory, use pandas
import pandas as pd
df = pd.read_csv('large_file.csv')
```
**For parallel processing:**
```python
from joblib import Parallel, delayed
n_jobs = resources['recommendations']['parallel_processing'].get('suggested_workers', 1)
results = Parallel(n_jobs=n_jobs)(
delayed(process_function)(item) for item in data
)
```
**For GPU acceleration:**
```python
import torch
if 'CUDA' in resources['gpu']['available_backends']:
device = torch.device('cuda')
elif 'Metal' in resources['gpu']['available_backends']:
device = torch.device('mps')
else:
device = torch.device('cpu')
model = model.to(device)
```
## Dependencies
The detection script requires the following Python packages:
```bash
uv pip install psutil
```
All other functionality uses Python standard library modules (json, os, platform, subprocess, sys, pathlib).
## Platform Support
- **macOS**: Full support including Apple Silicon (M1/M2/M3/M4) GPU detection
- **Linux**: Full support including NVIDIA (nvidia-smi) and AMD (rocm-smi) GPU detection
- **Windows**: Full support including NVIDIA GPU detection
## Best Practices
1. **Run early**: Execute resource detection at the start of projects or before major computational tasks
2. **Re-run periodically**: System resources change over time (memory usage, disk space)
3. **Check before scaling**: Verify resources before scaling up parallel workers or data sizes
4. **Document decisions**: Keep the `.claude_resources.json` file in project directories to document resource-aware decisions
5. **Use with versioning**: Different machines have different capabilities; resource files help maintain portability
## Troubleshooting
**GPU not detected:**
- Ensure GPU drivers are installed (nvidia-smi, rocm-smi, or system_profiler for Apple Silicon)
- Check that GPU utilities are in system PATH
- Verify GPU is not in use by other processes
**Script execution fails:**
- Ensure psutil is installed: `uv pip install psutil`
- Check Python version compatibility (Python 3.6+)
- Verify script has execute permissions: `chmod +x scripts/detect_resources.py`
**Inaccurate memory readings:**
- Memory readings are snapshots; actual available memory changes constantly
- Close other applications before detection for accurate "available" memory
- Consider running detection multiple times and averaging results

View File

@@ -0,0 +1,401 @@
#!/usr/bin/env python3
"""
System Resource Detection Script
Detects available compute resources including CPU, GPU, memory, and disk space.
Outputs a JSON file that Claude Code can use to make informed decisions about
computational approaches (e.g., whether to use Dask, Zarr, Joblib, etc.).
Supports: macOS, Linux, Windows
GPU Detection: NVIDIA (CUDA), AMD (ROCm), Apple Silicon (Metal)
"""
import json
import os
import platform
import psutil
import subprocess
import sys
from pathlib import Path
from typing import Dict, List, Any, Optional
def get_cpu_info() -> Dict[str, Any]:
"""Detect CPU information."""
cpu_info = {
"physical_cores": psutil.cpu_count(logical=False),
"logical_cores": psutil.cpu_count(logical=True),
"max_frequency_mhz": None,
"architecture": platform.machine(),
"processor": platform.processor(),
}
# Get CPU frequency if available
try:
freq = psutil.cpu_freq()
if freq:
cpu_info["max_frequency_mhz"] = freq.max
cpu_info["current_frequency_mhz"] = freq.current
except Exception:
pass
return cpu_info
def get_memory_info() -> Dict[str, Any]:
"""Detect memory information."""
mem = psutil.virtual_memory()
swap = psutil.swap_memory()
return {
"total_gb": round(mem.total / (1024**3), 2),
"available_gb": round(mem.available / (1024**3), 2),
"used_gb": round(mem.used / (1024**3), 2),
"percent_used": mem.percent,
"swap_total_gb": round(swap.total / (1024**3), 2),
"swap_available_gb": round((swap.total - swap.used) / (1024**3), 2),
}
def get_disk_info(path: str = None) -> Dict[str, Any]:
"""Detect disk space information for working directory or specified path."""
if path is None:
path = os.getcwd()
try:
disk = psutil.disk_usage(path)
return {
"path": path,
"total_gb": round(disk.total / (1024**3), 2),
"available_gb": round(disk.free / (1024**3), 2),
"used_gb": round(disk.used / (1024**3), 2),
"percent_used": disk.percent,
}
except Exception as e:
return {
"path": path,
"error": str(e),
}
def detect_nvidia_gpus() -> List[Dict[str, Any]]:
"""Detect NVIDIA GPUs using nvidia-smi."""
gpus = []
try:
# Try to run nvidia-smi
result = subprocess.run(
["nvidia-smi", "--query-gpu=index,name,memory.total,memory.free,driver_version,compute_cap",
"--format=csv,noheader,nounits"],
capture_output=True,
text=True,
timeout=5
)
if result.returncode == 0:
for line in result.stdout.strip().split('\n'):
if line:
parts = [p.strip() for p in line.split(',')]
if len(parts) >= 6:
gpus.append({
"index": int(parts[0]),
"name": parts[1],
"memory_total_mb": float(parts[2]),
"memory_free_mb": float(parts[3]),
"driver_version": parts[4],
"compute_capability": parts[5],
"type": "NVIDIA",
"backend": "CUDA"
})
except (subprocess.TimeoutExpired, FileNotFoundError, Exception):
pass
return gpus
def detect_amd_gpus() -> List[Dict[str, Any]]:
"""Detect AMD GPUs using rocm-smi."""
gpus = []
try:
# Try to run rocm-smi
result = subprocess.run(
["rocm-smi", "--showid", "--showmeminfo", "vram"],
capture_output=True,
text=True,
timeout=5
)
if result.returncode == 0:
# Parse rocm-smi output (basic parsing, may need refinement)
lines = result.stdout.strip().split('\n')
gpu_index = 0
for line in lines:
if 'GPU' in line and 'DID' in line:
gpus.append({
"index": gpu_index,
"name": "AMD GPU",
"type": "AMD",
"backend": "ROCm",
"info": line.strip()
})
gpu_index += 1
except (subprocess.TimeoutExpired, FileNotFoundError, Exception):
pass
return gpus
def detect_apple_silicon_gpu() -> Optional[Dict[str, Any]]:
"""Detect Apple Silicon GPU (M1/M2/M3/etc.)."""
if platform.system() != "Darwin":
return None
try:
# Check if running on Apple Silicon
result = subprocess.run(
["sysctl", "-n", "machdep.cpu.brand_string"],
capture_output=True,
text=True,
timeout=5
)
cpu_brand = result.stdout.strip()
# Check for Apple Silicon (M1, M2, M3, etc.)
if "Apple" in cpu_brand and any(chip in cpu_brand for chip in ["M1", "M2", "M3", "M4"]):
# Get GPU core count if possible
gpu_info = {
"name": cpu_brand,
"type": "Apple Silicon",
"backend": "Metal",
"unified_memory": True, # Apple Silicon uses unified memory
}
# Try to get GPU core information
try:
result = subprocess.run(
["system_profiler", "SPDisplaysDataType"],
capture_output=True,
text=True,
timeout=10
)
# Parse GPU core info from system_profiler
for line in result.stdout.split('\n'):
if 'Chipset Model' in line:
gpu_info["chipset"] = line.split(':')[1].strip()
elif 'Total Number of Cores' in line:
try:
cores = line.split(':')[1].strip()
gpu_info["gpu_cores"] = cores
except:
pass
except Exception:
pass
return gpu_info
except Exception:
pass
return None
def get_gpu_info() -> Dict[str, Any]:
"""Detect all available GPUs."""
gpu_info = {
"nvidia_gpus": detect_nvidia_gpus(),
"amd_gpus": detect_amd_gpus(),
"apple_silicon": detect_apple_silicon_gpu(),
"total_gpus": 0,
"available_backends": []
}
# Count total GPUs and available backends
if gpu_info["nvidia_gpus"]:
gpu_info["total_gpus"] += len(gpu_info["nvidia_gpus"])
gpu_info["available_backends"].append("CUDA")
if gpu_info["amd_gpus"]:
gpu_info["total_gpus"] += len(gpu_info["amd_gpus"])
gpu_info["available_backends"].append("ROCm")
if gpu_info["apple_silicon"]:
gpu_info["total_gpus"] += 1
gpu_info["available_backends"].append("Metal")
return gpu_info
def get_os_info() -> Dict[str, Any]:
"""Get operating system information."""
return {
"system": platform.system(),
"release": platform.release(),
"version": platform.version(),
"machine": platform.machine(),
"python_version": platform.python_version(),
}
def detect_all_resources(output_path: str = None) -> Dict[str, Any]:
"""
Detect all system resources and save to JSON.
Args:
output_path: Optional path to save JSON. Defaults to .claude_resources.json in cwd.
Returns:
Dictionary containing all resource information.
"""
if output_path is None:
output_path = os.path.join(os.getcwd(), ".claude_resources.json")
resources = {
"timestamp": __import__("datetime").datetime.now().isoformat(),
"os": get_os_info(),
"cpu": get_cpu_info(),
"memory": get_memory_info(),
"disk": get_disk_info(),
"gpu": get_gpu_info(),
}
# Add computational recommendations
resources["recommendations"] = generate_recommendations(resources)
# Save to JSON file
with open(output_path, 'w') as f:
json.dump(resources, f, indent=2)
return resources
def generate_recommendations(resources: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate computational approach recommendations based on available resources.
"""
recommendations = {
"parallel_processing": {},
"memory_strategy": {},
"gpu_acceleration": {},
"large_data_handling": {}
}
# CPU recommendations
cpu_cores = resources["cpu"]["logical_cores"]
if cpu_cores >= 8:
recommendations["parallel_processing"]["strategy"] = "high_parallelism"
recommendations["parallel_processing"]["suggested_workers"] = max(cpu_cores - 2, 1)
recommendations["parallel_processing"]["libraries"] = ["joblib", "multiprocessing", "dask"]
elif cpu_cores >= 4:
recommendations["parallel_processing"]["strategy"] = "moderate_parallelism"
recommendations["parallel_processing"]["suggested_workers"] = max(cpu_cores - 1, 1)
recommendations["parallel_processing"]["libraries"] = ["joblib", "multiprocessing"]
else:
recommendations["parallel_processing"]["strategy"] = "sequential"
recommendations["parallel_processing"]["note"] = "Limited cores, prefer sequential processing"
# Memory recommendations
available_memory_gb = resources["memory"]["available_gb"]
total_memory_gb = resources["memory"]["total_gb"]
if available_memory_gb < 4:
recommendations["memory_strategy"]["strategy"] = "memory_constrained"
recommendations["memory_strategy"]["libraries"] = ["zarr", "dask", "h5py"]
recommendations["memory_strategy"]["note"] = "Use out-of-core processing for large datasets"
elif available_memory_gb < 16:
recommendations["memory_strategy"]["strategy"] = "moderate_memory"
recommendations["memory_strategy"]["libraries"] = ["dask", "zarr"]
recommendations["memory_strategy"]["note"] = "Consider chunking for datasets > 2GB"
else:
recommendations["memory_strategy"]["strategy"] = "memory_abundant"
recommendations["memory_strategy"]["note"] = "Can load most datasets into memory"
# GPU recommendations
gpu_info = resources["gpu"]
if gpu_info["total_gpus"] > 0:
recommendations["gpu_acceleration"]["available"] = True
recommendations["gpu_acceleration"]["backends"] = gpu_info["available_backends"]
if "CUDA" in gpu_info["available_backends"]:
recommendations["gpu_acceleration"]["suggested_libraries"] = [
"pytorch", "tensorflow", "jax", "cupy", "rapids"
]
elif "Metal" in gpu_info["available_backends"]:
recommendations["gpu_acceleration"]["suggested_libraries"] = [
"pytorch-mps", "tensorflow-metal", "jax-metal"
]
elif "ROCm" in gpu_info["available_backends"]:
recommendations["gpu_acceleration"]["suggested_libraries"] = [
"pytorch-rocm", "tensorflow-rocm"
]
else:
recommendations["gpu_acceleration"]["available"] = False
recommendations["gpu_acceleration"]["note"] = "No GPU detected, use CPU-based libraries"
# Large data handling recommendations
disk_available_gb = resources["disk"]["available_gb"]
if disk_available_gb < 10:
recommendations["large_data_handling"]["strategy"] = "disk_constrained"
recommendations["large_data_handling"]["note"] = "Limited disk space, use streaming or compression"
elif disk_available_gb < 100:
recommendations["large_data_handling"]["strategy"] = "moderate_disk"
recommendations["large_data_handling"]["libraries"] = ["zarr", "h5py", "parquet"]
else:
recommendations["large_data_handling"]["strategy"] = "disk_abundant"
recommendations["large_data_handling"]["note"] = "Sufficient space for large intermediate files"
return recommendations
def main():
"""Main entry point for CLI usage."""
import argparse
parser = argparse.ArgumentParser(
description="Detect system resources for scientific computing"
)
parser.add_argument(
"-o", "--output",
default=".claude_resources.json",
help="Output JSON file path (default: .claude_resources.json)"
)
parser.add_argument(
"-v", "--verbose",
action="store_true",
help="Print resources to stdout"
)
args = parser.parse_args()
print("🔍 Detecting system resources...")
resources = detect_all_resources(args.output)
print(f"✅ Resources detected and saved to: {args.output}")
if args.verbose:
print("\n" + "="*60)
print(json.dumps(resources, indent=2))
print("="*60)
# Print summary
print("\n📊 Resource Summary:")
print(f" OS: {resources['os']['system']} {resources['os']['release']}")
print(f" CPU: {resources['cpu']['logical_cores']} cores ({resources['cpu']['physical_cores']} physical)")
print(f" Memory: {resources['memory']['total_gb']} GB total, {resources['memory']['available_gb']} GB available")
print(f" Disk: {resources['disk']['total_gb']} GB total, {resources['disk']['available_gb']} GB available")
if resources['gpu']['total_gpus'] > 0:
print(f" GPU: {resources['gpu']['total_gpus']} detected ({', '.join(resources['gpu']['available_backends'])})")
else:
print(" GPU: None detected")
print("\n💡 Recommendations:")
recs = resources['recommendations']
print(f" Parallel Processing: {recs['parallel_processing'].get('strategy', 'N/A')}")
print(f" Memory Strategy: {recs['memory_strategy'].get('strategy', 'N/A')}")
print(f" GPU Acceleration: {'Available' if recs['gpu_acceleration'].get('available') else 'Not Available'}")
if __name__ == "__main__":
main()