Initial commit
This commit is contained in:
@@ -0,0 +1,633 @@
|
||||
# Spectroscopy and Analytical Chemistry File Formats Reference
|
||||
|
||||
This reference covers file formats used in various spectroscopic techniques and analytical chemistry instrumentation.
|
||||
|
||||
## NMR Spectroscopy
|
||||
|
||||
### .fid - NMR Free Induction Decay
|
||||
**Description:** Raw time-domain NMR data from Bruker, Agilent, JEOL
|
||||
**Typical Data:** Complex time-domain signal
|
||||
**Use Cases:** NMR spectroscopy, structure elucidation
|
||||
**Python Libraries:**
|
||||
- `nmrglue`: `nmrglue.bruker.read_fid('fid')` or `nmrglue.varian.read_fid('fid')`
|
||||
- `nmrstarlib`: NMR data handling
|
||||
**EDA Approach:**
|
||||
- Time-domain signal decay
|
||||
- Sampling rate and acquisition time
|
||||
- Number of data points
|
||||
- Signal-to-noise ratio estimation
|
||||
- Baseline drift assessment
|
||||
- Digital filter effects
|
||||
- Acquisition parameter validation
|
||||
- Apodization function selection
|
||||
|
||||
### .ft / .ft1 / .ft2 - NMR Frequency Domain
|
||||
**Description:** Fourier-transformed NMR spectrum
|
||||
**Typical Data:** Processed frequency-domain data
|
||||
**Use Cases:** NMR analysis, peak integration
|
||||
**Python Libraries:**
|
||||
- `nmrglue`: Frequency domain reading
|
||||
- Custom processing pipelines
|
||||
**EDA Approach:**
|
||||
- Peak picking and integration
|
||||
- Chemical shift range
|
||||
- Baseline correction quality
|
||||
- Phase correction assessment
|
||||
- Reference peak identification
|
||||
- Spectral resolution
|
||||
- Artifacts detection
|
||||
- Multiplicity analysis
|
||||
|
||||
### .1r / .2rr - Bruker NMR Processed Data
|
||||
**Description:** Bruker processed spectrum (real part)
|
||||
**Typical Data:** 1D or 2D processed NMR spectra
|
||||
**Use Cases:** NMR data analysis with Bruker software
|
||||
**Python Libraries:**
|
||||
- `nmrglue`: Bruker format support
|
||||
**EDA Approach:**
|
||||
- Processing parameters review
|
||||
- Window function effects
|
||||
- Zero-filling assessment
|
||||
- Linear prediction validation
|
||||
- Spectral artifacts
|
||||
|
||||
### .dx - NMR JCAMP-DX
|
||||
**Description:** JCAMP-DX format for NMR
|
||||
**Typical Data:** Standardized NMR spectrum
|
||||
**Use Cases:** Data exchange between software
|
||||
**Python Libraries:**
|
||||
- `jcamp`: JCAMP reader
|
||||
- `nmrglue`: Can import JCAMP
|
||||
**EDA Approach:**
|
||||
- Format compliance
|
||||
- Metadata completeness
|
||||
- Peak table validation
|
||||
- Integration values
|
||||
- Compound identification info
|
||||
|
||||
### .mnova - Mnova Format
|
||||
**Description:** Mestrelab Research Mnova format
|
||||
**Typical Data:** NMR data with processing info
|
||||
**Use Cases:** Mnova software workflows
|
||||
**Python Libraries:**
|
||||
- `nmrglue`: Limited Mnova support
|
||||
- Conversion tools to standard formats
|
||||
**EDA Approach:**
|
||||
- Multi-spectrum handling
|
||||
- Processing pipeline review
|
||||
- Quantification data
|
||||
- Structure assignment
|
||||
|
||||
## Mass Spectrometry
|
||||
|
||||
### .mzML - Mass Spectrometry Markup Language
|
||||
**Description:** Standard XML-based MS format
|
||||
**Typical Data:** MS spectra, chromatograms, metadata
|
||||
**Use Cases:** Proteomics, metabolomics, lipidomics
|
||||
**Python Libraries:**
|
||||
- `pymzml`: `pymzml.run.Reader('file.mzML')`
|
||||
- `pyteomics.mzml`: `pyteomics.mzml.read('file.mzML')`
|
||||
- `MSFileReader`: Various wrappers
|
||||
**EDA Approach:**
|
||||
- Scan count and MS level distribution
|
||||
- Retention time range and TIC
|
||||
- m/z range and resolution
|
||||
- Precursor ion selection
|
||||
- Fragmentation patterns
|
||||
- Instrument configuration
|
||||
- Quality control metrics
|
||||
- Data completeness
|
||||
|
||||
### .mzXML - Mass Spectrometry XML
|
||||
**Description:** Legacy XML MS format
|
||||
**Typical Data:** Mass spectra and chromatograms
|
||||
**Use Cases:** Proteomics workflows (older)
|
||||
**Python Libraries:**
|
||||
- `pyteomics.mzxml`
|
||||
- `pymzml`: Can read mzXML
|
||||
**EDA Approach:**
|
||||
- Similar to mzML
|
||||
- Version compatibility
|
||||
- Conversion quality assessment
|
||||
|
||||
### .mzData - mzData Format
|
||||
**Description:** Legacy PSI MS format
|
||||
**Typical Data:** Mass spectrometry data
|
||||
**Use Cases:** Legacy data archives
|
||||
**Python Libraries:**
|
||||
- `pyteomics`: Limited support
|
||||
- Conversion to mzML recommended
|
||||
**EDA Approach:**
|
||||
- Format conversion validation
|
||||
- Data completeness
|
||||
- Metadata extraction
|
||||
|
||||
### .raw - Vendor Raw Files (Thermo, Agilent, Bruker)
|
||||
**Description:** Proprietary instrument data
|
||||
**Typical Data:** Raw mass spectra and metadata
|
||||
**Use Cases:** Direct instrument output
|
||||
**Python Libraries:**
|
||||
- `pymsfilereader`: Thermo RAW files
|
||||
- `ThermoRawFileParser`: CLI wrapper
|
||||
- Vendor-specific APIs
|
||||
**EDA Approach:**
|
||||
- Method parameter extraction
|
||||
- Instrument performance metrics
|
||||
- Calibration status
|
||||
- Scan function analysis
|
||||
- MS/MS quality metrics
|
||||
- Dynamic exclusion evaluation
|
||||
|
||||
### .d - Agilent Data Directory
|
||||
**Description:** Agilent MS data folder
|
||||
**Typical Data:** LC-MS, GC-MS with methods
|
||||
**Use Cases:** Agilent MassHunter workflows
|
||||
**Python Libraries:**
|
||||
- Community parsers
|
||||
- Chemstation integration
|
||||
**EDA Approach:**
|
||||
- Directory structure validation
|
||||
- Method parameters
|
||||
- Calibration curves
|
||||
- Sequence metadata
|
||||
- Signal quality metrics
|
||||
|
||||
### .wiff - AB SCIEX Data
|
||||
**Description:** AB SCIEX/SCIEX instrument format
|
||||
**Typical Data:** Mass spectrometry data
|
||||
**Use Cases:** SCIEX instrument workflows
|
||||
**Python Libraries:**
|
||||
- Vendor SDKs (limited Python support)
|
||||
- Conversion tools
|
||||
**EDA Approach:**
|
||||
- Experiment type identification
|
||||
- Scan properties
|
||||
- Quantitation data
|
||||
- Multi-experiment structure
|
||||
|
||||
### .mgf - Mascot Generic Format
|
||||
**Description:** Peak list format for MS/MS
|
||||
**Typical Data:** Precursor and fragment masses
|
||||
**Use Cases:** Peptide identification, database searches
|
||||
**Python Libraries:**
|
||||
- `pyteomics.mgf`: `pyteomics.mgf.read('file.mgf')`
|
||||
- `pyopenms`: MGF support
|
||||
**EDA Approach:**
|
||||
- Spectrum count
|
||||
- Charge state distribution
|
||||
- Precursor m/z and intensity
|
||||
- Fragment peak count
|
||||
- Mass accuracy
|
||||
- Title and metadata parsing
|
||||
|
||||
### .pkl - Peak List (Binary)
|
||||
**Description:** Binary peak list format
|
||||
**Typical Data:** Serialized MS/MS spectra
|
||||
**Use Cases:** Software-specific storage
|
||||
**Python Libraries:**
|
||||
- `pickle`: Standard deserialization
|
||||
- `pyteomics`: PKL support
|
||||
**EDA Approach:**
|
||||
- Data structure inspection
|
||||
- Conversion to standard formats
|
||||
- Metadata preservation
|
||||
|
||||
### .ms1 / .ms2 - MS1/MS2 Formats
|
||||
**Description:** Simple text format for MS data
|
||||
**Typical Data:** MS1 and MS2 scans
|
||||
**Use Cases:** Database searching, proteomics
|
||||
**Python Libraries:**
|
||||
- `pyteomics.ms1` and `ms2`
|
||||
- Simple text parsing
|
||||
**EDA Approach:**
|
||||
- Scan count by level
|
||||
- Retention time series
|
||||
- Charge state analysis
|
||||
- m/z range coverage
|
||||
|
||||
### .pepXML - Peptide XML
|
||||
**Description:** TPP peptide identification format
|
||||
**Typical Data:** Peptide-spectrum matches
|
||||
**Use Cases:** Proteomics search results
|
||||
**Python Libraries:**
|
||||
- `pyteomics.pepxml`
|
||||
**EDA Approach:**
|
||||
- Search result statistics
|
||||
- Score distribution
|
||||
- Modification analysis
|
||||
- FDR assessment
|
||||
- Enzyme specificity
|
||||
|
||||
### .protXML - Protein XML
|
||||
**Description:** TPP protein inference format
|
||||
**Typical Data:** Protein identifications
|
||||
**Use Cases:** Proteomics protein-level results
|
||||
**Python Libraries:**
|
||||
- `pyteomics.protxml`
|
||||
**EDA Approach:**
|
||||
- Protein group analysis
|
||||
- Coverage statistics
|
||||
- Confidence scoring
|
||||
- Parsimony analysis
|
||||
|
||||
### .msp - NIST MS Search Format
|
||||
**Description:** NIST spectral library format
|
||||
**Typical Data:** Reference mass spectra
|
||||
**Use Cases:** Spectral library searching
|
||||
**Python Libraries:**
|
||||
- `matchms`: Spectral library handling
|
||||
- Custom parsers
|
||||
**EDA Approach:**
|
||||
- Library size and coverage
|
||||
- Metadata completeness
|
||||
- Peak count statistics
|
||||
- Compound annotation quality
|
||||
|
||||
## Infrared and Raman Spectroscopy
|
||||
|
||||
### .spc - Galactic SPC
|
||||
**Description:** Thermo Galactic spectroscopy format
|
||||
**Typical Data:** IR, Raman, UV-Vis spectra
|
||||
**Use Cases:** Various spectroscopy instruments
|
||||
**Python Libraries:**
|
||||
- `spc`: `spc.File('file.spc')`
|
||||
- `specio`: Multi-format reader
|
||||
**EDA Approach:**
|
||||
- Wavenumber/wavelength range
|
||||
- Data point density
|
||||
- Multi-spectrum handling
|
||||
- Baseline characteristics
|
||||
- Peak identification
|
||||
- Absorbance/transmittance mode
|
||||
- Instrument information
|
||||
|
||||
### .spa - Thermo Nicolet
|
||||
**Description:** Thermo Fisher FTIR format
|
||||
**Typical Data:** FTIR spectra
|
||||
**Use Cases:** OMNIC software data
|
||||
**Python Libraries:**
|
||||
- Custom binary parsers
|
||||
- Conversion to JCAMP or SPC
|
||||
**EDA Approach:**
|
||||
- Interferogram vs spectrum
|
||||
- Background spectrum validation
|
||||
- Atmospheric compensation
|
||||
- Resolution and scan number
|
||||
- Sample information
|
||||
|
||||
### .0 - Bruker OPUS
|
||||
**Description:** Bruker OPUS FTIR format (numbered files)
|
||||
**Typical Data:** FTIR spectra and metadata
|
||||
**Use Cases:** Bruker FTIR instruments
|
||||
**Python Libraries:**
|
||||
- `brukeropusreader`: OPUS format parser
|
||||
- `specio`: OPUS support
|
||||
**EDA Approach:**
|
||||
- Multiple block types (AB, ScSm, etc.)
|
||||
- Sample and reference spectra
|
||||
- Instrument parameters
|
||||
- Optical path configuration
|
||||
- Beam splitter and detector info
|
||||
|
||||
### .dpt - Data Point Table
|
||||
**Description:** Simple XY data format
|
||||
**Typical Data:** Generic spectroscopic data
|
||||
**Use Cases:** Renishaw Raman, generic exports
|
||||
**Python Libraries:**
|
||||
- `pandas`: CSV-like reading
|
||||
- Text parsing
|
||||
**EDA Approach:**
|
||||
- X-axis type (wavelength, wavenumber, Raman shift)
|
||||
- Y-axis units (intensity, absorbance, etc.)
|
||||
- Data point spacing
|
||||
- Header information
|
||||
- Multi-column data handling
|
||||
|
||||
### .wdf - Renishaw Raman
|
||||
**Description:** Renishaw WiRE data format
|
||||
**Typical Data:** Raman spectra and maps
|
||||
**Use Cases:** Renishaw Raman microscopy
|
||||
**Python Libraries:**
|
||||
- `renishawWiRE`: WDF reader
|
||||
- Custom parsers for WDF format
|
||||
**EDA Approach:**
|
||||
- Spectral vs mapping data
|
||||
- Laser wavelength
|
||||
- Accumulation and exposure time
|
||||
- Spatial coordinates (mapping)
|
||||
- Z-scan data
|
||||
- Baseline and cosmic ray correction
|
||||
|
||||
### .txt (Spectroscopy)
|
||||
**Description:** Generic text export from instruments
|
||||
**Typical Data:** Wavelength/wavenumber and intensity
|
||||
**Use Cases:** Universal data exchange
|
||||
**Python Libraries:**
|
||||
- `pandas`: Text file reading
|
||||
- `numpy`: Simple array loading
|
||||
**EDA Approach:**
|
||||
- Delimiter and format detection
|
||||
- Header parsing
|
||||
- Units identification
|
||||
- Multiple spectrum handling
|
||||
- Metadata extraction from comments
|
||||
|
||||
## UV-Visible Spectroscopy
|
||||
|
||||
### .asd / .asc - ASD Binary/ASCII
|
||||
**Description:** ASD FieldSpec spectroradiometer
|
||||
**Typical Data:** Hyperspectral UV-Vis-NIR data
|
||||
**Use Cases:** Remote sensing, reflectance spectroscopy
|
||||
**Python Libraries:**
|
||||
- `spectral.io.asd`: ASD format support
|
||||
- Custom parsers
|
||||
**EDA Approach:**
|
||||
- Wavelength range (UV to NIR)
|
||||
- Reference spectrum validation
|
||||
- Dark current correction
|
||||
- Integration time
|
||||
- GPS metadata (if present)
|
||||
- Reflectance vs radiance
|
||||
|
||||
### .sp - Perkin Elmer
|
||||
**Description:** Perkin Elmer UV/Vis format
|
||||
**Typical Data:** UV-Vis spectrophotometer data
|
||||
**Use Cases:** PE Lambda instruments
|
||||
**Python Libraries:**
|
||||
- Custom parsers
|
||||
- Conversion to standard formats
|
||||
**EDA Approach:**
|
||||
- Scan parameters
|
||||
- Baseline correction
|
||||
- Multi-wavelength scans
|
||||
- Time-based measurements
|
||||
- Sample/reference handling
|
||||
|
||||
### .csv (Spectroscopy)
|
||||
**Description:** CSV export from UV-Vis instruments
|
||||
**Typical Data:** Wavelength and absorbance/transmittance
|
||||
**Use Cases:** Universal format for UV-Vis data
|
||||
**Python Libraries:**
|
||||
- `pandas`: Native CSV support
|
||||
**EDA Approach:**
|
||||
- Lambda max identification
|
||||
- Beer's law compliance
|
||||
- Baseline offset
|
||||
- Path length correction
|
||||
- Concentration calculations
|
||||
|
||||
## X-ray and Diffraction
|
||||
|
||||
### .cif - Crystallographic Information File
|
||||
**Description:** Crystal structure and diffraction data
|
||||
**Typical Data:** Unit cell, atomic positions, structure factors
|
||||
**Use Cases:** Crystallography, materials science
|
||||
**Python Libraries:**
|
||||
- `gemmi`: `gemmi.cif.read_file('file.cif')`
|
||||
- `PyCifRW`: CIF reading/writing
|
||||
- `pymatgen`: Materials structure analysis
|
||||
**EDA Approach:**
|
||||
- Crystal system and space group
|
||||
- Unit cell parameters
|
||||
- Atomic positions and occupancy
|
||||
- Thermal parameters
|
||||
- R-factors and refinement quality
|
||||
- Completeness and redundancy
|
||||
- Structure validation
|
||||
|
||||
### .hkl - Reflection Data
|
||||
**Description:** Miller indices and intensities
|
||||
**Typical Data:** Integrated diffraction intensities
|
||||
**Use Cases:** Crystallographic refinement
|
||||
**Python Libraries:**
|
||||
- Custom parsers (format dependent)
|
||||
- Crystallography packages (CCP4, etc.)
|
||||
**EDA Approach:**
|
||||
- Resolution range
|
||||
- Completeness by shell
|
||||
- I/sigma distribution
|
||||
- Systematic absences
|
||||
- Twinning detection
|
||||
- Wilson plot
|
||||
|
||||
### .mtz - MTZ Format (CCP4)
|
||||
**Description:** Binary crystallographic data
|
||||
**Typical Data:** Reflections, phases, structure factors
|
||||
**Use Cases:** Macromolecular crystallography
|
||||
**Python Libraries:**
|
||||
- `gemmi`: MTZ support
|
||||
- `cctbx`: Comprehensive crystallography
|
||||
**EDA Approach:**
|
||||
- Column types and data
|
||||
- Resolution limits
|
||||
- R-factors (Rwork, Rfree)
|
||||
- Phase probability distribution
|
||||
- Map coefficients
|
||||
- Batch information
|
||||
|
||||
### .xy / .xye - Powder Diffraction
|
||||
**Description:** 2-theta vs intensity data
|
||||
**Typical Data:** Powder X-ray diffraction patterns
|
||||
**Use Cases:** Phase identification, Rietveld refinement
|
||||
**Python Libraries:**
|
||||
- `pandas`: Simple XY reading
|
||||
- `pymatgen`: XRD pattern analysis
|
||||
**EDA Approach:**
|
||||
- 2-theta range
|
||||
- Peak positions and intensities
|
||||
- Background modeling
|
||||
- Peak width analysis (strain/size)
|
||||
- Phase identification via matching
|
||||
- Preferred orientation effects
|
||||
|
||||
### .raw (XRD)
|
||||
**Description:** Vendor-specific XRD raw data
|
||||
**Typical Data:** XRD patterns with metadata
|
||||
**Use Cases:** Bruker, PANalytical, Rigaku instruments
|
||||
**Python Libraries:**
|
||||
- Vendor-specific parsers
|
||||
- Conversion tools
|
||||
**EDA Approach:**
|
||||
- Scan parameters (step size, time)
|
||||
- Sample alignment
|
||||
- Incident beam setup
|
||||
- Detector configuration
|
||||
- Background scan validation
|
||||
|
||||
### .gsa / .gsas - GSAS Format
|
||||
**Description:** General Structure Analysis System
|
||||
**Typical Data:** Powder diffraction for Rietveld
|
||||
**Use Cases:** Rietveld refinement
|
||||
**Python Libraries:**
|
||||
- GSAS-II Python interface
|
||||
- Custom parsers
|
||||
**EDA Approach:**
|
||||
- Histogram data
|
||||
- Instrument parameters
|
||||
- Phase information
|
||||
- Refinement constraints
|
||||
- Profile function parameters
|
||||
|
||||
## Electron Spectroscopy
|
||||
|
||||
### .vms - VG Scienta
|
||||
**Description:** VG Scienta spectrometer format
|
||||
**Typical Data:** XPS, UPS, ARPES spectra
|
||||
**Use Cases:** Photoelectron spectroscopy
|
||||
**Python Libraries:**
|
||||
- Custom parsers for VMS
|
||||
- `specio`: Multi-format support
|
||||
**EDA Approach:**
|
||||
- Binding energy calibration
|
||||
- Pass energy and resolution
|
||||
- Photoelectron line identification
|
||||
- Satellite peak analysis
|
||||
- Background subtraction quality
|
||||
- Fermi edge position
|
||||
|
||||
### .spe - WinSpec/SPE Format
|
||||
**Description:** Princeton Instruments/Roper Scientific
|
||||
**Typical Data:** CCD spectra, Raman, PL
|
||||
**Use Cases:** Spectroscopy with CCD detectors
|
||||
**Python Libraries:**
|
||||
- `spe2py`: SPE file reader
|
||||
- `spe_loader`: Alternative parser
|
||||
**EDA Approach:**
|
||||
- CCD frame analysis
|
||||
- Wavelength calibration
|
||||
- Dark frame subtraction
|
||||
- Cosmic ray identification
|
||||
- Readout noise
|
||||
- Accumulation statistics
|
||||
|
||||
### .pxt - Princeton PTI
|
||||
**Description:** Photon Technology International
|
||||
**Typical Data:** Fluorescence, phosphorescence spectra
|
||||
**Use Cases:** Fluorescence spectroscopy
|
||||
**Python Libraries:**
|
||||
- Custom parsers
|
||||
- Text-based format variants
|
||||
**EDA Approach:**
|
||||
- Excitation and emission spectra
|
||||
- Quantum yield calculations
|
||||
- Time-resolved measurements
|
||||
- Temperature-dependent data
|
||||
- Correction factors applied
|
||||
|
||||
### .dat (Spectroscopy Generic)
|
||||
**Description:** Generic binary or text spectroscopy data
|
||||
**Typical Data:** Various spectroscopic measurements
|
||||
**Use Cases:** Many instruments use .dat extension
|
||||
**Python Libraries:**
|
||||
- Format-specific identification needed
|
||||
- `numpy`, `pandas` for known formats
|
||||
**EDA Approach:**
|
||||
- Format detection (binary vs text)
|
||||
- Header identification
|
||||
- Data structure inference
|
||||
- Units and axis labels
|
||||
- Instrument signature detection
|
||||
|
||||
## Chromatography
|
||||
|
||||
### .chrom - Chromatogram Data
|
||||
**Description:** Generic chromatography format
|
||||
**Typical Data:** Retention time vs signal
|
||||
**Use Cases:** HPLC, GC, LC-MS
|
||||
**Python Libraries:**
|
||||
- Vendor-specific parsers
|
||||
- `pandas` for text exports
|
||||
**EDA Approach:**
|
||||
- Retention time range
|
||||
- Peak detection and integration
|
||||
- Baseline drift
|
||||
- Resolution between peaks
|
||||
- Signal-to-noise ratio
|
||||
- Tailing factor
|
||||
|
||||
### .ch - ChemStation
|
||||
**Description:** Agilent ChemStation format
|
||||
**Typical Data:** Chromatograms and method parameters
|
||||
**Use Cases:** Agilent HPLC and GC systems
|
||||
**Python Libraries:**
|
||||
- `agilent-chemstation`: Community tools
|
||||
- Binary format parsers
|
||||
**EDA Approach:**
|
||||
- Method validation
|
||||
- Integration parameters
|
||||
- Calibration curve
|
||||
- Sample sequence information
|
||||
- Instrument status
|
||||
|
||||
### .arw - Empower (Waters)
|
||||
**Description:** Waters Empower format
|
||||
**Typical Data:** UPLC/HPLC chromatograms
|
||||
**Use Cases:** Waters instrument data
|
||||
**Python Libraries:**
|
||||
- Vendor tools (limited Python access)
|
||||
- Database extraction tools
|
||||
**EDA Approach:**
|
||||
- Audit trail information
|
||||
- Processing methods
|
||||
- Compound identification
|
||||
- Quantitation results
|
||||
- System suitability tests
|
||||
|
||||
### .lcd - Shimadzu LabSolutions
|
||||
**Description:** Shimadzu chromatography format
|
||||
**Typical Data:** GC/HPLC data
|
||||
**Use Cases:** Shimadzu instruments
|
||||
**Python Libraries:**
|
||||
- Vendor-specific parsers
|
||||
**EDA Approach:**
|
||||
- Method parameters
|
||||
- Peak purity analysis
|
||||
- Spectral data (if PDA)
|
||||
- Quantitative results
|
||||
|
||||
## Other Analytical Techniques
|
||||
|
||||
### .dta - DSC/TGA Data
|
||||
**Description:** Thermal analysis data (TA Instruments)
|
||||
**Typical Data:** Temperature vs heat flow or mass
|
||||
**Use Cases:** Differential scanning calorimetry, thermogravimetry
|
||||
**Python Libraries:**
|
||||
- Custom parsers for TA formats
|
||||
- `pandas` for exported data
|
||||
**EDA Approach:**
|
||||
- Transition temperature identification
|
||||
- Enthalpy calculations
|
||||
- Mass loss steps
|
||||
- Heating rate effects
|
||||
- Baseline determination
|
||||
- Purity assessment
|
||||
|
||||
### .run - ICP-MS/ICP-OES
|
||||
**Description:** Elemental analysis data
|
||||
**Typical Data:** Element concentrations or counts
|
||||
**Use Cases:** Inductively coupled plasma MS/OES
|
||||
**Python Libraries:**
|
||||
- Vendor-specific tools
|
||||
- Custom parsers
|
||||
**EDA Approach:**
|
||||
- Element detection and quantitation
|
||||
- Internal standard performance
|
||||
- Spike recovery
|
||||
- Dilution factor corrections
|
||||
- Isotope ratios
|
||||
- LOD/LOQ calculations
|
||||
|
||||
### .exp - Electrochemistry Data
|
||||
**Description:** Electrochemical experiment data
|
||||
**Typical Data:** Potential vs current or charge
|
||||
**Use Cases:** Cyclic voltammetry, chronoamperometry
|
||||
**Python Libraries:**
|
||||
- Custom parsers per instrument (CHI, Gamry, etc.)
|
||||
- `galvani`: Biologic EC-Lab files
|
||||
**EDA Approach:**
|
||||
- Redox peak identification
|
||||
- Peak potential and current
|
||||
- Scan rate effects
|
||||
- Electron transfer kinetics
|
||||
- Background subtraction
|
||||
- Capacitance calculations
|
||||
Reference in New Issue
Block a user