Initial commit
This commit is contained in:
@@ -0,0 +1,620 @@
|
||||
# Microscopy and Imaging File Formats Reference
|
||||
|
||||
This reference covers file formats used in microscopy, medical imaging, remote sensing, and scientific image analysis.
|
||||
|
||||
## Microscopy-Specific Formats
|
||||
|
||||
### .tif / .tiff - Tagged Image File Format
|
||||
**Description:** Flexible image format supporting multiple pages and metadata
|
||||
**Typical Data:** Microscopy images, z-stacks, time series, multi-channel
|
||||
**Use Cases:** Fluorescence microscopy, confocal imaging, biological imaging
|
||||
**Python Libraries:**
|
||||
- `tifffile`: `tifffile.imread('file.tif')` - Microscopy TIFF support
|
||||
- `PIL/Pillow`: `Image.open('file.tif')` - Basic TIFF
|
||||
- `scikit-image`: `io.imread('file.tif')`
|
||||
- `AICSImageIO`: Multi-format microscopy reader
|
||||
**EDA Approach:**
|
||||
- Image dimensions and bit depth
|
||||
- Multi-page/z-stack analysis
|
||||
- Metadata extraction (OME-TIFF)
|
||||
- Channel analysis and intensity distributions
|
||||
- Temporal dynamics (time-lapse)
|
||||
- Pixel size and spatial calibration
|
||||
- Histogram analysis per channel
|
||||
- Dynamic range utilization
|
||||
|
||||
### .nd2 - Nikon NIS-Elements
|
||||
**Description:** Proprietary Nikon microscope format
|
||||
**Typical Data:** Multi-dimensional microscopy (XYZCT)
|
||||
**Use Cases:** Nikon microscope data, confocal, widefield
|
||||
**Python Libraries:**
|
||||
- `nd2reader`: `ND2Reader('file.nd2')`
|
||||
- `pims`: `pims.ND2_Reader('file.nd2')`
|
||||
- `AICSImageIO`: Universal reader
|
||||
**EDA Approach:**
|
||||
- Experiment metadata extraction
|
||||
- Channel configurations
|
||||
- Time-lapse frame analysis
|
||||
- Z-stack depth and spacing
|
||||
- XY stage positions
|
||||
- Laser settings and power
|
||||
- Pixel binning information
|
||||
- Acquisition timestamps
|
||||
|
||||
### .lif - Leica Image Format
|
||||
**Description:** Leica microscope proprietary format
|
||||
**Typical Data:** Multi-experiment, multi-dimensional images
|
||||
**Use Cases:** Leica confocal and widefield data
|
||||
**Python Libraries:**
|
||||
- `readlif`: `readlif.LifFile('file.lif')`
|
||||
- `AICSImageIO`: LIF support
|
||||
- `python-bioformats`: Via Bio-Formats
|
||||
**EDA Approach:**
|
||||
- Multiple experiment detection
|
||||
- Image series enumeration
|
||||
- Metadata per experiment
|
||||
- Channel and timepoint structure
|
||||
- Physical dimensions extraction
|
||||
- Objective and detector information
|
||||
- Scan settings analysis
|
||||
|
||||
### .czi - Carl Zeiss Image
|
||||
**Description:** Zeiss microscope format
|
||||
**Typical Data:** Multi-dimensional microscopy with rich metadata
|
||||
**Use Cases:** Zeiss confocal, lightsheet, widefield
|
||||
**Python Libraries:**
|
||||
- `czifile`: `czifile.CziFile('file.czi')`
|
||||
- `AICSImageIO`: CZI support
|
||||
- `pylibCZIrw`: Official Zeiss library
|
||||
**EDA Approach:**
|
||||
- Scene and position analysis
|
||||
- Mosaic tile structure
|
||||
- Channel wavelength information
|
||||
- Acquisition mode detection
|
||||
- Scaling and calibration
|
||||
- Instrument configuration
|
||||
- ROI definitions
|
||||
|
||||
### .oib / .oif - Olympus Image Format
|
||||
**Description:** Olympus microscope formats
|
||||
**Typical Data:** Confocal and multiphoton imaging
|
||||
**Use Cases:** Olympus FluoView data
|
||||
**Python Libraries:**
|
||||
- `AICSImageIO`: OIB/OIF support
|
||||
- `python-bioformats`: Via Bio-Formats
|
||||
**EDA Approach:**
|
||||
- Directory structure validation (OIF)
|
||||
- Metadata file parsing
|
||||
- Channel configuration
|
||||
- Scan parameters
|
||||
- Objective and filter information
|
||||
- PMT settings
|
||||
|
||||
### .vsi - Olympus VSI
|
||||
**Description:** Olympus slide scanner format
|
||||
**Typical Data:** Whole slide imaging, large mosaics
|
||||
**Use Cases:** Virtual microscopy, pathology
|
||||
**Python Libraries:**
|
||||
- `openslide-python`: `openslide.OpenSlide('file.vsi')`
|
||||
- `AICSImageIO`: VSI support
|
||||
**EDA Approach:**
|
||||
- Pyramid level analysis
|
||||
- Tile structure and overlap
|
||||
- Macro and label images
|
||||
- Magnification levels
|
||||
- Whole slide statistics
|
||||
- Region detection
|
||||
|
||||
### .ims - Imaris Format
|
||||
**Description:** Bitplane Imaris HDF5-based format
|
||||
**Typical Data:** Large 3D/4D microscopy datasets
|
||||
**Use Cases:** 3D rendering, time-lapse analysis
|
||||
**Python Libraries:**
|
||||
- `h5py`: Direct HDF5 access
|
||||
- `imaris_ims_file_reader`: Specialized reader
|
||||
**EDA Approach:**
|
||||
- Resolution level analysis
|
||||
- Time point structure
|
||||
- Channel organization
|
||||
- Dataset hierarchy
|
||||
- Thumbnail generation
|
||||
- Memory-mapped access strategies
|
||||
- Chunking optimization
|
||||
|
||||
### .lsm - Zeiss LSM
|
||||
**Description:** Legacy Zeiss confocal format
|
||||
**Typical Data:** Confocal laser scanning microscopy
|
||||
**Use Cases:** Older Zeiss confocal data
|
||||
**Python Libraries:**
|
||||
- `tifffile`: LSM support (TIFF-based)
|
||||
- `python-bioformats`: LSM reading
|
||||
**EDA Approach:**
|
||||
- Similar to TIFF with LSM-specific metadata
|
||||
- Scan speed and resolution
|
||||
- Laser lines and power
|
||||
- Detector gain and offset
|
||||
- LUT information
|
||||
|
||||
### .stk - MetaMorph Stack
|
||||
**Description:** MetaMorph image stack format
|
||||
**Typical Data:** Time-lapse or z-stack sequences
|
||||
**Use Cases:** MetaMorph software output
|
||||
**Python Libraries:**
|
||||
- `tifffile`: STK is TIFF-based
|
||||
- `python-bioformats`: STK support
|
||||
**EDA Approach:**
|
||||
- Stack dimensionality
|
||||
- Plane metadata
|
||||
- Timing information
|
||||
- Stage positions
|
||||
- UIC tags parsing
|
||||
|
||||
### .dv - DeltaVision
|
||||
**Description:** Applied Precision DeltaVision format
|
||||
**Typical Data:** Deconvolution microscopy
|
||||
**Use Cases:** DeltaVision microscope data
|
||||
**Python Libraries:**
|
||||
- `mrc`: Can read DV (MRC-related)
|
||||
- `AICSImageIO`: DV support
|
||||
**EDA Approach:**
|
||||
- Wave information (channels)
|
||||
- Extended header analysis
|
||||
- Lens and magnification
|
||||
- Deconvolution status
|
||||
- Time stamps per section
|
||||
|
||||
### .mrc - Medical Research Council
|
||||
**Description:** Electron microscopy format
|
||||
**Typical Data:** EM images, cryo-EM, tomography
|
||||
**Use Cases:** Structural biology, electron microscopy
|
||||
**Python Libraries:**
|
||||
- `mrcfile`: `mrcfile.open('file.mrc')`
|
||||
- `EMAN2`: EM-specific tools
|
||||
**EDA Approach:**
|
||||
- Volume dimensions
|
||||
- Voxel size and units
|
||||
- Origin and map statistics
|
||||
- Symmetry information
|
||||
- Extended header analysis
|
||||
- Density statistics
|
||||
- Header consistency validation
|
||||
|
||||
### .dm3 / .dm4 - Gatan Digital Micrograph
|
||||
**Description:** Gatan TEM/STEM format
|
||||
**Typical Data:** Transmission electron microscopy
|
||||
**Use Cases:** TEM imaging and analysis
|
||||
**Python Libraries:**
|
||||
- `hyperspy`: `hs.load('file.dm3')`
|
||||
- `ncempy`: `ncempy.io.dm.dmReader('file.dm3')`
|
||||
**EDA Approach:**
|
||||
- Microscope parameters
|
||||
- Energy dispersive spectroscopy data
|
||||
- Diffraction patterns
|
||||
- Calibration information
|
||||
- Tag structure analysis
|
||||
- Image series handling
|
||||
|
||||
### .eer - Electron Event Representation
|
||||
**Description:** Direct electron detector format
|
||||
**Typical Data:** Electron counting data from detectors
|
||||
**Use Cases:** Cryo-EM data collection
|
||||
**Python Libraries:**
|
||||
- `mrcfile`: Some EER support
|
||||
- Vendor-specific tools (Gatan, TFS)
|
||||
**EDA Approach:**
|
||||
- Event counting statistics
|
||||
- Frame rate and dose
|
||||
- Detector configuration
|
||||
- Motion correction assessment
|
||||
- Gain reference validation
|
||||
|
||||
### .ser - TIA Series
|
||||
**Description:** FEI/TFS TIA format
|
||||
**Typical Data:** EM image series
|
||||
**Use Cases:** FEI/Thermo Fisher EM data
|
||||
**Python Libraries:**
|
||||
- `hyperspy`: SER support
|
||||
- `ncempy`: TIA reader
|
||||
**EDA Approach:**
|
||||
- Series structure
|
||||
- Calibration data
|
||||
- Acquisition metadata
|
||||
- Time stamps
|
||||
- Multi-dimensional data organization
|
||||
|
||||
## Medical and Biological Imaging
|
||||
|
||||
### .dcm - DICOM
|
||||
**Description:** Digital Imaging and Communications in Medicine
|
||||
**Typical Data:** Medical images with patient/study metadata
|
||||
**Use Cases:** Clinical imaging, radiology, CT, MRI, PET
|
||||
**Python Libraries:**
|
||||
- `pydicom`: `pydicom.dcmread('file.dcm')`
|
||||
- `SimpleITK`: `sitk.ReadImage('file.dcm')`
|
||||
- `nibabel`: Limited DICOM support
|
||||
**EDA Approach:**
|
||||
- Patient metadata extraction (anonymization check)
|
||||
- Modality-specific analysis
|
||||
- Series and study organization
|
||||
- Slice thickness and spacing
|
||||
- Window/level settings
|
||||
- Hounsfield units (CT)
|
||||
- Image orientation and position
|
||||
- Multi-frame analysis
|
||||
|
||||
### .nii / .nii.gz - NIfTI
|
||||
**Description:** Neuroimaging Informatics Technology Initiative
|
||||
**Typical Data:** Brain imaging, fMRI, structural MRI
|
||||
**Use Cases:** Neuroimaging research, brain analysis
|
||||
**Python Libraries:**
|
||||
- `nibabel`: `nibabel.load('file.nii')`
|
||||
- `nilearn`: Neuroimaging with ML
|
||||
- `SimpleITK`: NIfTI support
|
||||
**EDA Approach:**
|
||||
- Volume dimensions and voxel size
|
||||
- Affine transformation matrix
|
||||
- Time series analysis (fMRI)
|
||||
- Intensity distribution
|
||||
- Brain extraction quality
|
||||
- Registration assessment
|
||||
- Orientation validation
|
||||
- Header information consistency
|
||||
|
||||
### .mnc - MINC Format
|
||||
**Description:** Medical Image NetCDF
|
||||
**Typical Data:** Medical imaging (predecessor to NIfTI)
|
||||
**Use Cases:** Legacy neuroimaging data
|
||||
**Python Libraries:**
|
||||
- `pyminc`: MINC-specific tools
|
||||
- `nibabel`: MINC support
|
||||
**EDA Approach:**
|
||||
- Similar to NIfTI
|
||||
- NetCDF structure exploration
|
||||
- Dimension ordering
|
||||
- Metadata extraction
|
||||
|
||||
### .nrrd - Nearly Raw Raster Data
|
||||
**Description:** Medical imaging format with detached header
|
||||
**Typical Data:** Medical images, research imaging
|
||||
**Use Cases:** 3D Slicer, ITK-based applications
|
||||
**Python Libraries:**
|
||||
- `pynrrd`: `nrrd.read('file.nrrd')`
|
||||
- `SimpleITK`: NRRD support
|
||||
**EDA Approach:**
|
||||
- Header field analysis
|
||||
- Encoding format
|
||||
- Dimension and spacing
|
||||
- Orientation matrix
|
||||
- Compression assessment
|
||||
- Endianness handling
|
||||
|
||||
### .mha / .mhd - MetaImage
|
||||
**Description:** MetaImage format (ITK)
|
||||
**Typical Data:** Medical/scientific 3D images
|
||||
**Use Cases:** ITK/SimpleITK applications
|
||||
**Python Libraries:**
|
||||
- `SimpleITK`: Native MHA/MHD support
|
||||
- `itk`: Direct ITK integration
|
||||
**EDA Approach:**
|
||||
- Header-data file pairing (MHD)
|
||||
- Transform matrix
|
||||
- Element spacing
|
||||
- Compression format
|
||||
- Data type and dimensions
|
||||
|
||||
### .hdr / .img - Analyze Format
|
||||
**Description:** Legacy medical imaging format
|
||||
**Typical Data:** Brain imaging (pre-NIfTI)
|
||||
**Use Cases:** Old neuroimaging datasets
|
||||
**Python Libraries:**
|
||||
- `nibabel`: Analyze support
|
||||
- Conversion to NIfTI recommended
|
||||
**EDA Approach:**
|
||||
- Header-image pairing validation
|
||||
- Byte order issues
|
||||
- Conversion to modern formats
|
||||
- Metadata limitations
|
||||
|
||||
## Scientific Image Formats
|
||||
|
||||
### .png - Portable Network Graphics
|
||||
**Description:** Lossless compressed image format
|
||||
**Typical Data:** 2D images, screenshots, processed data
|
||||
**Use Cases:** Publication figures, lossless storage
|
||||
**Python Libraries:**
|
||||
- `PIL/Pillow`: `Image.open('file.png')`
|
||||
- `scikit-image`: `io.imread('file.png')`
|
||||
- `imageio`: `imageio.imread('file.png')`
|
||||
**EDA Approach:**
|
||||
- Bit depth analysis (8-bit, 16-bit)
|
||||
- Color mode (grayscale, RGB, palette)
|
||||
- Metadata (PNG chunks)
|
||||
- Transparency handling
|
||||
- Compression efficiency
|
||||
- Histogram analysis
|
||||
|
||||
### .jpg / .jpeg - Joint Photographic Experts Group
|
||||
**Description:** Lossy compressed image format
|
||||
**Typical Data:** Natural images, photos
|
||||
**Use Cases:** Visualization, web graphics (not raw data)
|
||||
**Python Libraries:**
|
||||
- `PIL/Pillow`: Standard JPEG support
|
||||
- `scikit-image`: JPEG reading
|
||||
**EDA Approach:**
|
||||
- Compression artifacts detection
|
||||
- Quality factor estimation
|
||||
- Color space (RGB, grayscale)
|
||||
- EXIF metadata
|
||||
- Quantization table analysis
|
||||
- Note: Not suitable for quantitative analysis
|
||||
|
||||
### .bmp - Bitmap Image
|
||||
**Description:** Uncompressed raster image
|
||||
**Typical Data:** Simple images, screenshots
|
||||
**Use Cases:** Compatibility, simple storage
|
||||
**Python Libraries:**
|
||||
- `PIL/Pillow`: BMP support
|
||||
- `scikit-image`: BMP reading
|
||||
**EDA Approach:**
|
||||
- Color depth
|
||||
- Palette analysis (if indexed)
|
||||
- File size efficiency
|
||||
- Pixel format validation
|
||||
|
||||
### .gif - Graphics Interchange Format
|
||||
**Description:** Image format with animation support
|
||||
**Typical Data:** Animated images, simple graphics
|
||||
**Use Cases:** Animations, time-lapse visualization
|
||||
**Python Libraries:**
|
||||
- `PIL/Pillow`: GIF support
|
||||
- `imageio`: Better GIF animation support
|
||||
**EDA Approach:**
|
||||
- Frame count and timing
|
||||
- Palette limitations (256 colors)
|
||||
- Loop count
|
||||
- Disposal method
|
||||
- Transparency handling
|
||||
|
||||
### .svg - Scalable Vector Graphics
|
||||
**Description:** XML-based vector graphics
|
||||
**Typical Data:** Vector drawings, plots, diagrams
|
||||
**Use Cases:** Publication-quality figures, plots
|
||||
**Python Libraries:**
|
||||
- `svgpathtools`: Path manipulation
|
||||
- `cairosvg`: Rasterization
|
||||
- `lxml`: XML parsing
|
||||
**EDA Approach:**
|
||||
- Element structure analysis
|
||||
- Style information
|
||||
- Viewbox and dimensions
|
||||
- Path complexity
|
||||
- Text element extraction
|
||||
- Layer organization
|
||||
|
||||
### .eps - Encapsulated PostScript
|
||||
**Description:** Vector graphics format
|
||||
**Typical Data:** Publication figures
|
||||
**Use Cases:** Legacy publication graphics
|
||||
**Python Libraries:**
|
||||
- `PIL/Pillow`: Basic EPS rasterization
|
||||
- `ghostscript` via subprocess
|
||||
**EDA Approach:**
|
||||
- Bounding box information
|
||||
- Preview image validation
|
||||
- Font embedding
|
||||
- Conversion to modern formats
|
||||
|
||||
### .pdf (Images)
|
||||
**Description:** Portable Document Format with images
|
||||
**Typical Data:** Publication figures, multi-page documents
|
||||
**Use Cases:** Publication, data presentation
|
||||
**Python Libraries:**
|
||||
- `PyMuPDF/fitz`: `fitz.open('file.pdf')`
|
||||
- `pdf2image`: Rasterization
|
||||
- `pdfplumber`: Text and layout extraction
|
||||
**EDA Approach:**
|
||||
- Page count
|
||||
- Image extraction
|
||||
- Resolution and DPI
|
||||
- Embedded fonts and metadata
|
||||
- Compression methods
|
||||
- Image vs vector content
|
||||
|
||||
### .fig - MATLAB Figure
|
||||
**Description:** MATLAB figure file
|
||||
**Typical Data:** MATLAB plots and figures
|
||||
**Use Cases:** MATLAB data visualization
|
||||
**Python Libraries:**
|
||||
- Custom parsers (MAT file structure)
|
||||
- Conversion to other formats
|
||||
**EDA Approach:**
|
||||
- Figure structure
|
||||
- Data extraction from plots
|
||||
- Axes and label information
|
||||
- Plot type identification
|
||||
|
||||
### .hdf5 (Imaging Specific)
|
||||
**Description:** HDF5 for large imaging datasets
|
||||
**Typical Data:** High-content screening, large microscopy
|
||||
**Use Cases:** BigDataViewer, large-scale imaging
|
||||
**Python Libraries:**
|
||||
- `h5py`: Universal HDF5 access
|
||||
- Imaging-specific readers (BigDataViewer)
|
||||
**EDA Approach:**
|
||||
- Dataset hierarchy
|
||||
- Chunk and compression strategy
|
||||
- Multi-resolution pyramid
|
||||
- Metadata organization
|
||||
- Memory-mapped access
|
||||
- Parallel I/O performance
|
||||
|
||||
### .zarr - Chunked Array Storage
|
||||
**Description:** Cloud-optimized array storage
|
||||
**Typical Data:** Large imaging datasets, OME-ZARR
|
||||
**Use Cases:** Cloud microscopy, large-scale analysis
|
||||
**Python Libraries:**
|
||||
- `zarr`: `zarr.open('file.zarr')`
|
||||
- `ome-zarr-py`: OME-ZARR support
|
||||
**EDA Approach:**
|
||||
- Chunk size optimization
|
||||
- Compression codec analysis
|
||||
- Multi-scale representation
|
||||
- Array dimensions and dtype
|
||||
- Metadata structure (OME)
|
||||
- Cloud access patterns
|
||||
|
||||
### .raw - Raw Image Data
|
||||
**Description:** Unformatted binary pixel data
|
||||
**Typical Data:** Raw detector output
|
||||
**Use Cases:** Custom imaging systems
|
||||
**Python Libraries:**
|
||||
- `numpy`: `np.fromfile()` with dtype
|
||||
- `imageio`: Raw format plugins
|
||||
**EDA Approach:**
|
||||
- Dimensions determination (external info needed)
|
||||
- Byte order and data type
|
||||
- Header presence detection
|
||||
- Pixel value range
|
||||
- Noise characteristics
|
||||
|
||||
### .bin - Binary Image Data
|
||||
**Description:** Generic binary image format
|
||||
**Typical Data:** Raw or custom-formatted images
|
||||
**Use Cases:** Instrument-specific outputs
|
||||
**Python Libraries:**
|
||||
- `numpy`: Custom binary reading
|
||||
- `struct`: For structured binary data
|
||||
**EDA Approach:**
|
||||
- Format specification required
|
||||
- Header parsing (if present)
|
||||
- Data type inference
|
||||
- Dimension extraction
|
||||
- Validation with known parameters
|
||||
|
||||
## Image Analysis Formats
|
||||
|
||||
### .roi - ImageJ ROI
|
||||
**Description:** ImageJ region of interest format
|
||||
**Typical Data:** Geometric ROIs, selections
|
||||
**Use Cases:** ImageJ/Fiji analysis workflows
|
||||
**Python Libraries:**
|
||||
- `read-roi`: `read_roi.read_roi_file('file.roi')`
|
||||
- `roifile`: ROI manipulation
|
||||
**EDA Approach:**
|
||||
- ROI type analysis (rectangle, polygon, etc.)
|
||||
- Coordinate extraction
|
||||
- ROI properties (area, perimeter)
|
||||
- Group analysis (ROI sets)
|
||||
- Z-position and time information
|
||||
|
||||
### .zip (ROI sets)
|
||||
**Description:** ZIP archive of ImageJ ROIs
|
||||
**Typical Data:** Multiple ROI files
|
||||
**Use Cases:** Batch ROI analysis
|
||||
**Python Libraries:**
|
||||
- `read-roi`: `read_roi.read_roi_zip('file.zip')`
|
||||
- Standard `zipfile` module
|
||||
**EDA Approach:**
|
||||
- ROI count in set
|
||||
- ROI type distribution
|
||||
- Spatial distribution
|
||||
- Overlapping ROI detection
|
||||
- Naming conventions
|
||||
|
||||
### .ome.tif / .ome.tiff - OME-TIFF
|
||||
**Description:** TIFF with OME-XML metadata
|
||||
**Typical Data:** Standardized microscopy with rich metadata
|
||||
**Use Cases:** Bio-Formats compatible storage
|
||||
**Python Libraries:**
|
||||
- `tifffile`: OME-TIFF support
|
||||
- `AICSImageIO`: OME reading
|
||||
- `python-bioformats`: Bio-Formats integration
|
||||
**EDA Approach:**
|
||||
- OME-XML validation
|
||||
- Physical dimensions extraction
|
||||
- Channel naming and wavelengths
|
||||
- Plane positions (Z, C, T)
|
||||
- Instrument metadata
|
||||
- Bio-Formats compatibility
|
||||
|
||||
### .ome.zarr - OME-ZARR
|
||||
**Description:** OME-NGFF specification on ZARR
|
||||
**Typical Data:** Next-generation file format for bioimaging
|
||||
**Use Cases:** Cloud-native imaging, large datasets
|
||||
**Python Libraries:**
|
||||
- `ome-zarr-py`: Official implementation
|
||||
- `zarr`: Underlying array storage
|
||||
**EDA Approach:**
|
||||
- Multiscale resolution levels
|
||||
- Metadata compliance with OME-NGFF spec
|
||||
- Coordinate transformations
|
||||
- Label and ROI handling
|
||||
- Cloud storage optimization
|
||||
- Chunk access patterns
|
||||
|
||||
### .klb - Keller Lab Block
|
||||
**Description:** Fast microscopy format for large data
|
||||
**Typical Data:** Lightsheet microscopy, time-lapse
|
||||
**Use Cases:** High-throughput imaging
|
||||
**Python Libraries:**
|
||||
- `pyklb`: KLB reading and writing
|
||||
**EDA Approach:**
|
||||
- Compression efficiency
|
||||
- Block structure
|
||||
- Multi-resolution support
|
||||
- Read performance benchmarking
|
||||
- Metadata extraction
|
||||
|
||||
### .vsi - Whole Slide Imaging
|
||||
**Description:** Virtual slide format (multiple vendors)
|
||||
**Typical Data:** Pathology slides, large mosaics
|
||||
**Use Cases:** Digital pathology
|
||||
**Python Libraries:**
|
||||
- `openslide-python`: Multi-format WSI
|
||||
- `tiffslide`: Pure Python alternative
|
||||
**EDA Approach:**
|
||||
- Pyramid level count
|
||||
- Downsampling factors
|
||||
- Associated images (macro, label)
|
||||
- Tile size and overlap
|
||||
- MPP (microns per pixel)
|
||||
- Background detection
|
||||
- Tissue segmentation
|
||||
|
||||
### .ndpi - Hamamatsu NanoZoomer
|
||||
**Description:** Hamamatsu slide scanner format
|
||||
**Typical Data:** Whole slide pathology images
|
||||
**Use Cases:** Digital pathology workflows
|
||||
**Python Libraries:**
|
||||
- `openslide-python`: NDPI support
|
||||
**EDA Approach:**
|
||||
- Multi-resolution pyramid
|
||||
- Lens and objective information
|
||||
- Scan area and magnification
|
||||
- Focal plane information
|
||||
- Tissue detection
|
||||
|
||||
### .svs - Aperio ScanScope
|
||||
**Description:** Aperio whole slide format
|
||||
**Typical Data:** Digital pathology slides
|
||||
**Use Cases:** Pathology image analysis
|
||||
**Python Libraries:**
|
||||
- `openslide-python`: SVS support
|
||||
**EDA Approach:**
|
||||
- Pyramid structure
|
||||
- MPP calibration
|
||||
- Label and macro images
|
||||
- Compression quality
|
||||
- Thumbnail generation
|
||||
|
||||
### .scn - Leica SCN
|
||||
**Description:** Leica slide scanner format
|
||||
**Typical Data:** Whole slide imaging
|
||||
**Use Cases:** Digital pathology
|
||||
**Python Libraries:**
|
||||
- `openslide-python`: SCN support
|
||||
**EDA Approach:**
|
||||
- Tile structure analysis
|
||||
- Collection organization
|
||||
- Metadata extraction
|
||||
- Magnification levels
|
||||
Reference in New Issue
Block a user