Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,198 @@
---
name: ena-database
description: "Access European Nucleotide Archive via API/FTP. Retrieve DNA/RNA sequences, raw reads (FASTQ), genome assemblies by accession, for genomics and bioinformatics pipelines. Supports multiple formats."
---
# ENA Database
## Overview
The European Nucleotide Archive (ENA) is a comprehensive public repository for nucleotide sequence data and associated metadata. Access and query DNA/RNA sequences, raw reads, genome assemblies, and functional annotations through REST APIs and FTP for genomics and bioinformatics pipelines.
## When to Use This Skill
This skill should be used when:
- Retrieving nucleotide sequences or raw sequencing reads by accession
- Searching for samples, studies, or assemblies by metadata criteria
- Downloading FASTQ files or genome assemblies for analysis
- Querying taxonomic information for organisms
- Accessing sequence annotations and functional data
- Integrating ENA data into bioinformatics pipelines
- Performing cross-reference searches to related databases
- Bulk downloading datasets via FTP or Aspera
## Core Capabilities
### 1. Data Types and Structure
ENA organizes data into hierarchical object types:
**Studies/Projects** - Group related data and control release dates. Studies are the primary unit for citing archived data.
**Samples** - Represent units of biomaterial from which sequencing libraries were produced. Samples must be registered before submitting most data types.
**Raw Reads** - Consist of:
- **Experiments**: Metadata about sequencing methods, library preparation, and instrument details
- **Runs**: References to data files containing raw sequencing reads from a single sequencing run
**Assemblies** - Genome, transcriptome, metagenome, or metatranscriptome assemblies at various completion levels.
**Sequences** - Assembled and annotated sequences stored in the EMBL Nucleotide Sequence Database, including coding/non-coding regions and functional annotations.
**Analyses** - Results from computational analyses of sequence data.
**Taxonomy Records** - Taxonomic information including lineage and rank.
### 2. Programmatic Access
ENA provides multiple REST APIs for data access. Consult `references/api_reference.md` for detailed endpoint documentation.
**Key APIs:**
**ENA Portal API** - Advanced search functionality across all ENA data types
- Documentation: https://www.ebi.ac.uk/ena/portal/api/doc
- Use for complex queries and metadata searches
**ENA Browser API** - Direct retrieval of records and metadata
- Documentation: https://www.ebi.ac.uk/ena/browser/api/doc
- Use for downloading specific records by accession
- Returns data in XML format
**ENA Taxonomy REST API** - Query taxonomic information
- Access lineage, rank, and related taxonomic data
**ENA Cross Reference Service** - Access related records from external databases
- Endpoint: https://www.ebi.ac.uk/ena/xref/rest/
**CRAM Reference Registry** - Retrieve reference sequences
- Endpoint: https://www.ebi.ac.uk/ena/cram/
- Query by MD5 or SHA1 checksums
**Rate Limiting**: All APIs have a rate limit of 50 requests per second. Exceeding this returns HTTP 429 (Too Many Requests).
### 3. Searching and Retrieving Data
**Browser-Based Search:**
- Free text search across all fields
- Sequence similarity search (BLAST integration)
- Cross-reference search to find related records
- Advanced search with Rulespace query builder
**Programmatic Queries:**
- Use Portal API for advanced searches at scale
- Filter by data type, date range, taxonomy, or metadata fields
- Download results as tabulated metadata summaries or XML records
**Example API Query Pattern:**
```python
import requests
# Search for samples from a specific study
base_url = "https://www.ebi.ac.uk/ena/portal/api/search"
params = {
"result": "sample",
"query": "study_accession=PRJEB1234",
"format": "json",
"limit": 100
}
response = requests.get(base_url, params=params)
samples = response.json()
```
### 4. Data Retrieval Formats
**Metadata Formats:**
- XML (native ENA format)
- JSON (via Portal API)
- TSV/CSV (tabulated summaries)
**Sequence Data:**
- FASTQ (raw reads)
- BAM/CRAM (aligned reads)
- FASTA (assembled sequences)
- EMBL flat file format (annotated sequences)
**Download Methods:**
- Direct API download (small files)
- FTP for bulk data transfer
- Aspera for high-speed transfer of large datasets
- enaBrowserTools command-line utility for bulk downloads
### 5. Common Use Cases
**Retrieve raw sequencing reads by accession:**
```python
# Download run files using Browser API
accession = "ERR123456"
url = f"https://www.ebi.ac.uk/ena/browser/api/xml/{accession}"
```
**Search for all samples in a study:**
```python
# Use Portal API to list samples
study_id = "PRJNA123456"
url = f"https://www.ebi.ac.uk/ena/portal/api/search?result=sample&query=study_accession={study_id}&format=tsv"
```
**Find assemblies for a specific organism:**
```python
# Search assemblies by taxonomy
organism = "Escherichia coli"
url = f"https://www.ebi.ac.uk/ena/portal/api/search?result=assembly&query=tax_tree({organism})&format=json"
```
**Get taxonomic lineage:**
```python
# Query taxonomy API
taxon_id = "562" # E. coli
url = f"https://www.ebi.ac.uk/ena/taxonomy/rest/tax-id/{taxon_id}"
```
### 6. Integration with Analysis Pipelines
**Bulk Download Pattern:**
1. Search for accessions matching criteria using Portal API
2. Extract file URLs from search results
3. Download files via FTP or using enaBrowserTools
4. Process downloaded data in pipeline
**BLAST Integration:**
Integrate with EBI's NCBI BLAST service (REST/SOAP API) for sequence similarity searches against ENA sequences.
### 7. Best Practices
**Rate Limiting:**
- Implement exponential backoff when receiving HTTP 429 responses
- Batch requests when possible to stay within 50 req/sec limit
- Use bulk download tools for large datasets instead of iterating API calls
**Data Citation:**
- Always cite using Study/Project accessions when publishing
- Include accession numbers for specific samples, runs, or assemblies used
**API Response Handling:**
- Check HTTP status codes before processing responses
- Parse XML responses using proper XML libraries (not regex)
- Handle pagination for large result sets
**Performance:**
- Use FTP/Aspera for downloading large files (>100MB)
- Prefer TSV/JSON formats over XML when only metadata is needed
- Cache taxonomy lookups locally when processing many records
## Resources
This skill includes detailed reference documentation for working with ENA:
### references/
**api_reference.md** - Comprehensive API endpoint documentation including:
- Detailed parameters for Portal API and Browser API
- Response format specifications
- Advanced query syntax and operators
- Field names for filtering and searching
- Common API patterns and examples
Load this reference when constructing complex API queries, debugging API responses, or needing specific parameter details.

View File

@@ -0,0 +1,490 @@
# ENA API Reference
Comprehensive reference for the European Nucleotide Archive REST APIs.
## ENA Portal API
**Base URL:** `https://www.ebi.ac.uk/ena/portal/api`
**Official Documentation:** https://www.ebi.ac.uk/ena/portal/api/doc
### Search Endpoint
**Endpoint:** `/search`
**Method:** GET
**Description:** Perform advanced searches across ENA data types with flexible filtering and formatting options.
**Parameters:**
| Parameter | Required | Description | Example |
|-----------|----------|-------------|---------|
| `result` | Yes | Data type to search | `sample`, `study`, `read_run`, `assembly`, `sequence`, `analysis`, `taxon` |
| `query` | Yes | Search query using ENA query syntax | `tax_eq(9606)`, `study_accession="PRJNA123456"` |
| `format` | No | Output format (default: tsv) | `json`, `tsv`, `xml` |
| `fields` | No | Comma-separated list of fields to return | `accession,sample_title,scientific_name` |
| `limit` | No | Maximum number of results (default: 100000) | `10`, `1000` |
| `offset` | No | Result offset for pagination | `0`, `100` |
| `sortFields` | No | Fields to sort by (comma-separated) | `accession`, `collection_date` |
| `sortOrder` | No | Sort direction | `asc`, `desc` |
| `dataPortal` | No | Restrict to specific data portal | `ena`, `pathogen`, `metagenome` |
| `download` | No | Trigger file download | `true`, `false` |
| `includeAccessions` | No | Comma-separated accessions to include | `SAMN01,SAMN02` |
| `excludeAccessions` | No | Comma-separated accessions to exclude | `SAMN03,SAMN04` |
**Query Syntax:**
ENA uses a specialized query language with operators:
- **Equality:** `field_name="value"` or `field_name=value`
- **Wildcards:** `field_name="*partial*"` (use * for wildcard)
- **Range:** `field_name>=value AND field_name<=value`
- **Logical:** `query1 AND query2`, `query1 OR query2`, `NOT query`
- **Taxonomy:** `tax_eq(taxon_id)` - exact match, `tax_tree(taxon_id)` - includes descendants
- **Date ranges:** `collection_date>=2020-01-01 AND collection_date<=2023-12-31`
- **In operator:** `study_accession IN (PRJNA1,PRJNA2,PRJNA3)`
**Common Result Types:**
- `study` - Research projects/studies
- `sample` - Biological samples
- `read_run` - Raw sequencing runs
- `read_experiment` - Sequencing experiment metadata
- `analysis` - Analysis results
- `assembly` - Genome/transcriptome assemblies
- `sequence` - Assembled sequences
- `taxon` - Taxonomic records
- `coding` - Protein coding sequences
- `noncoding` - Non-coding sequences
**Example Requests:**
```python
import requests
# Search for human samples
url = "https://www.ebi.ac.uk/ena/portal/api/search"
params = {
"result": "sample",
"query": "tax_eq(9606)",
"format": "json",
"fields": "accession,sample_title,collection_date",
"limit": 100
}
response = requests.get(url, params=params)
# Search for RNA-seq experiments in a study
params = {
"result": "read_experiment",
"query": 'study_accession="PRJNA123456" AND library_strategy="RNA-Seq"',
"format": "tsv"
}
response = requests.get(url, params=params)
# Find assemblies for E. coli with minimum contig N50
params = {
"result": "assembly",
"query": "tax_tree(562) AND contig_n50>=50000",
"format": "json"
}
response = requests.get(url, params=params)
```
### Fields Endpoint
**Endpoint:** `/returnFields`
**Method:** GET
**Description:** List available fields for a specific result type.
**Parameters:**
| Parameter | Required | Description | Example |
|-----------|----------|-------------|---------|
| `result` | Yes | Data type | `sample`, `study`, `assembly` |
| `dataPortal` | No | Filter by data portal | `ena`, `pathogen` |
**Example:**
```python
# Get all available fields for samples
url = "https://www.ebi.ac.uk/ena/portal/api/returnFields"
params = {"result": "sample"}
response = requests.get(url, params=params)
fields = response.json()
```
### Results Endpoint
**Endpoint:** `/results`
**Method:** GET
**Description:** List available result types.
**Example:**
```python
url = "https://www.ebi.ac.uk/ena/portal/api/results"
response = requests.get(url)
```
### File Report Endpoint
**Endpoint:** `/filereport`
**Method:** GET
**Description:** Get file information and download URLs for reads and analyses.
**Parameters:**
| Parameter | Required | Description | Example |
|-----------|----------|-------------|---------|
| `accession` | Yes | Run or analysis accession | `ERR123456` |
| `result` | Yes | Must be `read_run` or `analysis` | `read_run` |
| `format` | No | Output format | `json`, `tsv` |
| `fields` | No | Fields to include | `run_accession,fastq_ftp,fastq_md5` |
**Common File Report Fields:**
- `run_accession` - Run accession number
- `fastq_ftp` - FTP URLs for FASTQ files (semicolon-separated)
- `fastq_aspera` - Aspera URLs for FASTQ files
- `fastq_md5` - MD5 checksums (semicolon-separated)
- `fastq_bytes` - File sizes in bytes (semicolon-separated)
- `submitted_ftp` - FTP URLs for originally submitted files
- `sra_ftp` - FTP URL for SRA format file
**Example:**
```python
# Get FASTQ download URLs for a run
url = "https://www.ebi.ac.uk/ena/portal/api/filereport"
params = {
"accession": "ERR123456",
"result": "read_run",
"format": "json",
"fields": "run_accession,fastq_ftp,fastq_md5,fastq_bytes"
}
response = requests.get(url, params=params)
file_info = response.json()
# Download FASTQ files
for ftp_url in file_info[0]['fastq_ftp'].split(';'):
# Download from ftp://ftp.sra.ebi.ac.uk/...
pass
```
## ENA Browser API
**Base URL:** `https://www.ebi.ac.uk/ena/browser/api`
**Official Documentation:** https://www.ebi.ac.uk/ena/browser/api/doc
### XML Retrieval
**Endpoint:** `/xml/{accession}`
**Method:** GET
**Description:** Retrieve record metadata in XML format.
**Parameters:**
| Parameter | Type | Description | Example |
|-----------|------|-------------|---------|
| `accession` | Path | Record accession number | `PRJNA123456`, `SAMEA123456`, `ERR123456` |
| `download` | Query | Set to `true` to trigger download | `true` |
| `includeLinks` | Query | Include cross-reference links | `true`, `false` |
**Example:**
```python
# Get sample metadata in XML
accession = "SAMEA123456"
url = f"https://www.ebi.ac.uk/ena/browser/api/xml/{accession}"
response = requests.get(url)
xml_data = response.text
# Get study with cross-references
url = f"https://www.ebi.ac.uk/ena/browser/api/xml/PRJNA123456"
params = {"includeLinks": "true"}
response = requests.get(url, params=params)
```
### Text Retrieval
**Endpoint:** `/text/{accession}`
**Method:** GET
**Description:** Retrieve sequences in EMBL flat file format.
**Parameters:**
| Parameter | Type | Description | Example |
|-----------|------|-------------|---------|
| `accession` | Path | Sequence accession | `LN847353` |
| `download` | Query | Trigger download | `true` |
| `expandDataclasses` | Query | Include related data classes | `true` |
| `lineLimit` | Query | Limit output lines | `1000` |
**Example:**
```python
# Get sequence in EMBL format
url = "https://www.ebi.ac.uk/ena/browser/api/text/LN847353"
response = requests.get(url)
embl_format = response.text
```
### FASTA Retrieval
**Endpoint:** `/fasta/{accession}`
**Method:** GET
**Description:** Retrieve sequences in FASTA format.
**Parameters:**
| Parameter | Type | Description | Example |
|-----------|------|-------------|---------|
| `accession` | Path | Sequence accession | `LN847353` |
| `download` | Query | Trigger download | `true` |
| `range` | Query | Subsequence range | `100-500` |
| `lineLimit` | Query | Limit output lines | `1000` |
**Example:**
```python
# Get full sequence
url = "https://www.ebi.ac.uk/ena/browser/api/fasta/LN847353"
response = requests.get(url)
fasta_data = response.text
# Get subsequence
url = "https://www.ebi.ac.uk/ena/browser/api/fasta/LN847353"
params = {"range": "1000-2000"}
response = requests.get(url, params=params)
```
### Links Retrieval
**Endpoint:** `/links/{source}/{accession}`
**Method:** GET
**Description:** Get cross-references to external databases.
**Parameters:**
| Parameter | Type | Description | Example |
|-----------|------|-------------|---------|
| `source` | Path | Source database type | `sample`, `study`, `sequence` |
| `accession` | Path | Accession number | `SAMEA123456` |
| `target` | Query | Target database filter | `sra`, `biosample` |
**Example:**
```python
# Get all links for a sample
url = "https://www.ebi.ac.uk/ena/browser/api/links/sample/SAMEA123456"
response = requests.get(url)
```
## ENA Taxonomy REST API
**Base URL:** `https://www.ebi.ac.uk/ena/taxonomy/rest`
**Description:** Query taxonomic information including lineage and rank.
### Tax ID Lookup
**Endpoint:** `/tax-id/{taxon_id}`
**Method:** GET
**Description:** Get taxonomic information by NCBI taxonomy ID.
**Example:**
```python
# Get E. coli taxonomy
taxon_id = "562"
url = f"https://www.ebi.ac.uk/ena/taxonomy/rest/tax-id/{taxon_id}"
response = requests.get(url)
taxonomy = response.json()
# Returns: taxId, scientificName, commonName, rank, lineage, etc.
```
### Scientific Name Lookup
**Endpoint:** `/scientific-name/{name}`
**Method:** GET
**Description:** Search by scientific name (may return multiple matches).
**Example:**
```python
# Search by scientific name
name = "Escherichia coli"
url = f"https://www.ebi.ac.uk/ena/taxonomy/rest/scientific-name/{name}"
response = requests.get(url)
```
### Suggest Names
**Endpoint:** `/suggest-for-submission/{partial_name}`
**Method:** GET
**Description:** Get taxonomy suggestions for submission (autocomplete).
**Example:**
```python
# Get suggestions
partial = "Escheri"
url = f"https://www.ebi.ac.uk/ena/taxonomy/rest/suggest-for-submission/{partial}"
response = requests.get(url)
```
## Cross-Reference Service
**Base URL:** `https://www.ebi.ac.uk/ena/xref/rest`
**Description:** Access records related to ENA entries in external databases.
### Get Cross-References
**Endpoint:** `/json/{source}/{accession}`
**Method:** GET
**Description:** Retrieve cross-references in JSON format.
**Parameters:**
| Parameter | Type | Description | Example |
|-----------|------|-------------|---------|
| `source` | Path | Source database | `ena`, `sra` |
| `accession` | Path | Accession number | `SRR000001` |
**Example:**
```python
# Get cross-references for an SRA accession
url = "https://www.ebi.ac.uk/ena/xref/rest/json/sra/SRR000001"
response = requests.get(url)
xrefs = response.json()
```
## CRAM Reference Registry
**Base URL:** `https://www.ebi.ac.uk/ena/cram`
**Description:** Retrieve reference sequences used in CRAM files.
### MD5 Lookup
**Endpoint:** `/md5/{md5_checksum}`
**Method:** GET
**Description:** Retrieve reference sequence by MD5 checksum.
**Example:**
```python
# Get reference by MD5
md5 = "7c3f69f0c5f0f0de6d7c34e7c2e25f5c"
url = f"https://www.ebi.ac.uk/ena/cram/md5/{md5}"
response = requests.get(url)
reference_fasta = response.text
```
## Rate Limiting and Error Handling
**Rate Limits:**
- Maximum: 50 requests per second
- Exceeding limit returns HTTP 429 (Too Many Requests)
- Implement exponential backoff when receiving 429 responses
**Common HTTP Status Codes:**
- `200 OK` - Success
- `204 No Content` - Success but no data returned
- `400 Bad Request` - Invalid parameters
- `404 Not Found` - Accession not found
- `429 Too Many Requests` - Rate limit exceeded
- `500 Internal Server Error` - Server error (retry with backoff)
**Error Handling Pattern:**
```python
import time
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
def create_session_with_retries():
"""Create requests session with retry logic"""
session = requests.Session()
retries = Retry(
total=5,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["GET", "POST"]
)
adapter = HTTPAdapter(max_retries=retries)
session.mount("https://", adapter)
return session
# Usage
session = create_session_with_retries()
response = session.get(url, params=params)
```
## Bulk Download Recommendations
For downloading large numbers of files or large datasets:
1. **Use FTP directly** instead of API for file downloads
- Base FTP: `ftp://ftp.sra.ebi.ac.uk/vol1/fastq/`
- Aspera for high-speed: `era-fasp@fasp.sra.ebi.ac.uk:`
2. **Use enaBrowserTools** command-line utility
```bash
# Download by accession
enaDataGet ERR123456
# Download all runs from a study
enaGroupGet PRJEB1234
```
3. **Batch API requests** with proper delays
```python
import time
accessions = ["ERR001", "ERR002", "ERR003"]
for acc in accessions:
response = requests.get(f"{base_url}/xml/{acc}")
# Process response
time.sleep(0.02) # 50 req/sec = 0.02s between requests
```
## Query Optimization Tips
1. **Use specific result types** instead of broad searches
2. **Limit fields** to only what you need using `fields` parameter
3. **Use pagination** for large result sets (limit + offset)
4. **Cache taxonomy lookups** locally
5. **Prefer JSON/TSV** over XML when possible (smaller, faster)
6. **Use includeAccessions/excludeAccessions** to filter large result sets efficiently
7. **Batch similar queries** together when possible