Initial commit
This commit is contained in:
182
skills/diffdock/references/confidence_and_limitations.md
Normal file
182
skills/diffdock/references/confidence_and_limitations.md
Normal file
@@ -0,0 +1,182 @@
|
||||
# DiffDock Confidence Scores and Limitations
|
||||
|
||||
This document provides detailed guidance on interpreting DiffDock confidence scores and understanding the tool's limitations.
|
||||
|
||||
## Confidence Score Interpretation
|
||||
|
||||
DiffDock generates a confidence score for each predicted binding pose. This score indicates the model's certainty about the prediction.
|
||||
|
||||
### Score Ranges
|
||||
|
||||
| Score Range | Confidence Level | Interpretation |
|
||||
|------------|------------------|----------------|
|
||||
| **> 0** | High confidence | Strong prediction, likely accurate binding pose |
|
||||
| **-1.5 to 0** | Moderate confidence | Reasonable prediction, may need validation |
|
||||
| **< -1.5** | Low confidence | Uncertain prediction, requires careful validation |
|
||||
|
||||
### Important Notes on Confidence Scores
|
||||
|
||||
1. **Not Binding Affinity**: Confidence scores reflect prediction certainty, NOT binding affinity strength
|
||||
- High confidence = model is confident about the structure
|
||||
- Does NOT indicate strong/weak binding affinity
|
||||
|
||||
2. **Context-Dependent**: Confidence scores should be adjusted based on system complexity:
|
||||
- **Lower expectations** for:
|
||||
- Large ligands (>500 Da)
|
||||
- Protein complexes with many chains
|
||||
- Unbound protein conformations (may require conformational changes)
|
||||
- Novel protein families not well-represented in training data
|
||||
|
||||
- **Higher expectations** for:
|
||||
- Drug-like small molecules (150-500 Da)
|
||||
- Single-chain proteins or well-defined binding sites
|
||||
- Proteins similar to those in training data (PDBBind, BindingMOAD)
|
||||
|
||||
3. **Multiple Predictions**: DiffDock generates multiple samples per complex (default: 10)
|
||||
- Review top-ranked predictions (by confidence)
|
||||
- Consider clustering similar poses
|
||||
- High-confidence consensus across multiple samples strengthens prediction
|
||||
|
||||
## What DiffDock Predicts
|
||||
|
||||
### ✅ DiffDock DOES Predict
|
||||
- **Binding poses**: 3D spatial orientation of ligand in protein binding site
|
||||
- **Confidence scores**: Model's certainty about predictions
|
||||
- **Multiple conformations**: Various possible binding modes
|
||||
|
||||
### ❌ DiffDock DOES NOT Predict
|
||||
- **Binding affinity**: Strength of protein-ligand interaction (ΔG, Kd, Ki)
|
||||
- **Binding kinetics**: On/off rates, residence time
|
||||
- **ADMET properties**: Absorption, distribution, metabolism, excretion, toxicity
|
||||
- **Selectivity**: Relative binding to different targets
|
||||
|
||||
## Scope and Limitations
|
||||
|
||||
### Designed For
|
||||
- **Small molecule docking**: Organic compounds typically 100-1000 Da
|
||||
- **Protein targets**: Single or multi-chain proteins
|
||||
- **Small peptides**: Short peptide ligands (< ~20 residues)
|
||||
- **Small nucleic acids**: Short oligonucleotides
|
||||
|
||||
### NOT Designed For
|
||||
- **Large biomolecules**: Full protein-protein interactions
|
||||
- Use DiffDock-PP, AlphaFold-Multimer, or RoseTTAFold2NA instead
|
||||
- **Large peptides/proteins**: >20 residues as ligands
|
||||
- **Covalent docking**: Irreversible covalent bond formation
|
||||
- **Metalloprotein specifics**: May not accurately handle metal coordination
|
||||
- **Membrane proteins**: Not specifically trained on membrane-embedded proteins
|
||||
|
||||
### Training Data Considerations
|
||||
|
||||
DiffDock was trained on:
|
||||
- **PDBBind**: Diverse protein-ligand complexes
|
||||
- **BindingMOAD**: Multi-domain protein structures
|
||||
|
||||
**Implications**:
|
||||
- Best performance on proteins/ligands similar to training data
|
||||
- May underperform on:
|
||||
- Novel protein families
|
||||
- Unusual ligand chemotypes
|
||||
- Allosteric sites not well-represented in training data
|
||||
|
||||
## Validation and Complementary Tools
|
||||
|
||||
### Recommended Workflow
|
||||
|
||||
1. **Generate poses with DiffDock**
|
||||
- Use confidence scores for initial ranking
|
||||
- Consider multiple high-confidence predictions
|
||||
|
||||
2. **Visual Inspection**
|
||||
- Examine protein-ligand interactions in molecular viewer
|
||||
- Check for reasonable:
|
||||
- Hydrogen bonds
|
||||
- Hydrophobic interactions
|
||||
- Steric complementarity
|
||||
- Electrostatic interactions
|
||||
|
||||
3. **Scoring and Refinement** (choose one or more):
|
||||
- **GNINA**: Deep learning-based scoring function
|
||||
- **Molecular mechanics**: Energy minimization and refinement
|
||||
- **MM/GBSA or MM/PBSA**: Binding free energy estimation
|
||||
- **Free energy calculations**: FEP or TI for accurate affinity prediction
|
||||
|
||||
4. **Experimental Validation**
|
||||
- Biochemical assays (IC50, Kd measurements)
|
||||
- Structural validation (X-ray crystallography, cryo-EM)
|
||||
|
||||
### Tools for Binding Affinity Assessment
|
||||
|
||||
DiffDock should be combined with these tools for affinity prediction:
|
||||
|
||||
- **GNINA**: Fast, accurate scoring function
|
||||
- Github: github.com/gnina/gnina
|
||||
|
||||
- **AutoDock Vina**: Classical docking and scoring
|
||||
- Website: vina.scripps.edu
|
||||
|
||||
- **Free Energy Calculations**:
|
||||
- OpenMM + OpenFE
|
||||
- GROMACS + ABFE/RBFE protocols
|
||||
|
||||
- **MM/GBSA Tools**:
|
||||
- MMPBSA.py (AmberTools)
|
||||
- gmx_MMPBSA
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### For Best Results
|
||||
|
||||
1. **Protein Preparation**:
|
||||
- Remove water molecules far from binding site
|
||||
- Resolve missing residues if possible
|
||||
- Consider protonation states at physiological pH
|
||||
|
||||
2. **Ligand Input**:
|
||||
- Provide reasonable 3D conformers when using structure files
|
||||
- Use canonical SMILES for consistent results
|
||||
- Pre-process with RDKit if needed
|
||||
|
||||
3. **Computational Resources**:
|
||||
- GPU strongly recommended (10-100x speedup)
|
||||
- First run pre-computes lookup tables (takes a few minutes)
|
||||
- Batch processing more efficient than single predictions
|
||||
|
||||
4. **Parameter Tuning**:
|
||||
- Increase `samples_per_complex` for difficult cases (20-40)
|
||||
- Adjust temperature parameters for diversity/accuracy trade-off
|
||||
- Use pre-computed ESM embeddings for repeated predictions
|
||||
|
||||
## Common Issues and Troubleshooting
|
||||
|
||||
### Low Confidence Scores
|
||||
- **Large/flexible ligands**: Consider splitting into fragments or use alternative methods
|
||||
- **Multiple binding sites**: May predict multiple locations with distributed confidence
|
||||
- **Protein flexibility**: Consider using ensemble of protein conformations
|
||||
|
||||
### Unrealistic Predictions
|
||||
- **Clashes**: May indicate need for protein preparation or refinement
|
||||
- **Surface binding**: Check if true binding site is blocked or unclear
|
||||
- **Unusual poses**: Consider increasing samples to explore more conformations
|
||||
|
||||
### Slow Performance
|
||||
- **Use GPU**: Essential for reasonable runtime
|
||||
- **Pre-compute embeddings**: Reuse ESM embeddings for same protein
|
||||
- **Batch processing**: More efficient than sequential individual predictions
|
||||
- **Reduce samples**: Lower `samples_per_complex` for quick screening
|
||||
|
||||
## Citation and Further Reading
|
||||
|
||||
For methodology details and benchmarking results, see:
|
||||
|
||||
1. **Original DiffDock Paper** (ICLR 2023):
|
||||
- "DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking"
|
||||
- Corso et al., arXiv:2210.01776
|
||||
|
||||
2. **DiffDock-L Paper** (2024):
|
||||
- Enhanced model with improved generalization
|
||||
- Stärk et al., arXiv:2402.18396
|
||||
|
||||
3. **PoseBusters Benchmark**:
|
||||
- Rigorous docking evaluation framework
|
||||
- Used for DiffDock validation
|
||||
Reference in New Issue
Block a user