Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,497 @@
# Dask Arrays
## Overview
Dask Array implements NumPy's ndarray interface using blocked algorithms. It coordinates many NumPy arrays arranged into a grid to enable computation on datasets larger than available memory, utilizing parallelism across multiple cores.
## Core Concept
A Dask Array is divided into chunks (blocks):
- Each chunk is a regular NumPy array
- Operations are applied to each chunk in parallel
- Results are combined automatically
- Enables out-of-core computation (data larger than RAM)
## Key Capabilities
### What Dask Arrays Support
**Mathematical Operations**:
- Arithmetic operations (+, -, *, /)
- Scalar functions (exponentials, logarithms, trigonometric)
- Element-wise operations
**Reductions**:
- `sum()`, `mean()`, `std()`, `var()`
- Reductions along specified axes
- `min()`, `max()`, `argmin()`, `argmax()`
**Linear Algebra**:
- Tensor contractions
- Dot products and matrix multiplication
- Some decompositions (SVD, QR)
**Data Manipulation**:
- Transposition
- Slicing (standard and fancy indexing)
- Reshaping
- Concatenation and stacking
**Array Protocols**:
- Universal functions (ufuncs)
- NumPy protocols for interoperability
## When to Use Dask Arrays
**Use Dask Arrays When**:
- Arrays exceed available RAM
- Computation can be parallelized across chunks
- Working with NumPy-style numerical operations
- Need to scale NumPy code to larger datasets
**Stick with NumPy When**:
- Arrays fit comfortably in memory
- Operations require global views of data
- Using specialized functions not available in Dask
- Performance is adequate with NumPy alone
## Important Limitations
Dask Arrays intentionally don't implement certain NumPy features:
**Not Implemented**:
- Most `np.linalg` functions (only basic operations available)
- Operations difficult to parallelize (like full sorting)
- Memory-inefficient operations (converting to lists, iterating via loops)
- Many specialized functions (driven by community needs)
**Workarounds**: For unsupported operations, consider using `map_blocks` with custom NumPy code.
## Creating Dask Arrays
### From NumPy Arrays
```python
import dask.array as da
import numpy as np
# Create from NumPy array with specified chunks
x = np.arange(10000)
dx = da.from_array(x, chunks=1000) # Creates 10 chunks of 1000 elements each
```
### Random Arrays
```python
# Create random array with specified chunks
x = da.random.random((10000, 10000), chunks=(1000, 1000))
# Other random functions
x = da.random.normal(10, 0.1, size=(10000, 10000), chunks=(1000, 1000))
```
### Zeros, Ones, and Empty
```python
# Create arrays filled with constants
zeros = da.zeros((10000, 10000), chunks=(1000, 1000))
ones = da.ones((10000, 10000), chunks=(1000, 1000))
empty = da.empty((10000, 10000), chunks=(1000, 1000))
```
### From Functions
```python
# Create array from function
def create_block(block_id):
return np.random.random((1000, 1000)) * block_id[0]
x = da.from_delayed(
[[dask.delayed(create_block)((i, j)) for j in range(10)] for i in range(10)],
shape=(10000, 10000),
dtype=float
)
```
### From Disk
```python
# Load from HDF5
import h5py
f = h5py.File('myfile.hdf5', mode='r')
x = da.from_array(f['/data'], chunks=(1000, 1000))
# Load from Zarr
import zarr
z = zarr.open('myfile.zarr', mode='r')
x = da.from_array(z, chunks=(1000, 1000))
```
## Common Operations
### Arithmetic Operations
```python
import dask.array as da
x = da.random.random((10000, 10000), chunks=(1000, 1000))
y = da.random.random((10000, 10000), chunks=(1000, 1000))
# Element-wise operations (lazy)
z = x + y
z = x * y
z = da.exp(x)
z = da.log(y)
# Compute result
result = z.compute()
```
### Reductions
```python
# Reductions along axes
total = x.sum().compute()
mean = x.mean().compute()
std = x.std().compute()
# Reduction along specific axis
row_means = x.mean(axis=1).compute()
col_sums = x.sum(axis=0).compute()
```
### Slicing and Indexing
```python
# Standard slicing (returns Dask Array)
subset = x[1000:5000, 2000:8000]
# Fancy indexing
indices = [0, 5, 10, 15]
selected = x[indices, :]
# Boolean indexing
mask = x > 0.5
filtered = x[mask]
```
### Matrix Operations
```python
# Matrix multiplication
A = da.random.random((10000, 5000), chunks=(1000, 1000))
B = da.random.random((5000, 8000), chunks=(1000, 1000))
C = da.matmul(A, B)
result = C.compute()
# Dot product
dot_product = da.dot(A, B)
# Transpose
AT = A.T
```
### Linear Algebra
```python
# SVD (Singular Value Decomposition)
U, s, Vt = da.linalg.svd(A)
U_computed, s_computed, Vt_computed = dask.compute(U, s, Vt)
# QR decomposition
Q, R = da.linalg.qr(A)
Q_computed, R_computed = dask.compute(Q, R)
# Note: Only some linalg operations are available
```
### Reshaping and Manipulation
```python
# Reshape
x = da.random.random((10000, 10000), chunks=(1000, 1000))
reshaped = x.reshape(5000, 20000)
# Transpose
transposed = x.T
# Concatenate
x1 = da.random.random((5000, 10000), chunks=(1000, 1000))
x2 = da.random.random((5000, 10000), chunks=(1000, 1000))
combined = da.concatenate([x1, x2], axis=0)
# Stack
stacked = da.stack([x1, x2], axis=0)
```
## Chunking Strategy
Chunking is critical for Dask Array performance.
### Chunk Size Guidelines
**Good Chunk Sizes**:
- Each chunk: ~10-100 MB (compressed)
- ~1 million elements per chunk for numeric data
- Balance between parallelism and overhead
**Example Calculation**:
```python
# For float64 data (8 bytes per element)
# Target 100 MB chunks: 100 MB / 8 bytes = 12.5M elements
# For 2D array (10000, 10000):
x = da.random.random((10000, 10000), chunks=(1000, 1000)) # ~8 MB per chunk
```
### Viewing Chunk Structure
```python
# Check chunks
print(x.chunks) # ((1000, 1000, ...), (1000, 1000, ...))
# Number of chunks
print(x.npartitions)
# Chunk sizes in bytes
print(x.nbytes / x.npartitions)
```
### Rechunking
```python
# Change chunk sizes
x = da.random.random((10000, 10000), chunks=(500, 500))
x_rechunked = x.rechunk((2000, 2000))
# Rechunk specific dimension
x_rechunked = x.rechunk({0: 2000, 1: 'auto'})
```
## Custom Operations with map_blocks
For operations not available in Dask, use `map_blocks`:
```python
import dask.array as da
import numpy as np
def custom_function(block):
# Apply custom NumPy operation
return np.fft.fft2(block)
x = da.random.random((10000, 10000), chunks=(1000, 1000))
result = da.map_blocks(custom_function, x, dtype=x.dtype)
# Compute
output = result.compute()
```
### map_blocks with Different Output Shape
```python
def reduction_function(block):
# Returns scalar for each block
return np.array([block.mean()])
result = da.map_blocks(
reduction_function,
x,
dtype='float64',
drop_axis=[0, 1], # Output has no axes from input
new_axis=0, # Output has new axis
chunks=(1,) # One element per block
)
```
## Lazy Evaluation and Computation
### Lazy Operations
```python
# All operations are lazy (instant, no computation)
x = da.random.random((10000, 10000), chunks=(1000, 1000))
y = x + 100
z = y.mean(axis=0)
result = z * 2
# Nothing computed yet, just task graph built
```
### Triggering Computation
```python
# Compute single result
final = result.compute()
# Compute multiple results efficiently
result1, result2 = dask.compute(operation1, operation2)
```
### Persist in Memory
```python
# Keep intermediate results in memory
x_cached = x.persist()
# Reuse cached results
y1 = (x_cached + 10).compute()
y2 = (x_cached * 2).compute()
```
## Saving Results
### To NumPy
```python
# Convert to NumPy (loads all in memory)
numpy_array = dask_array.compute()
```
### To Disk
```python
# Save to HDF5
import h5py
with h5py.File('output.hdf5', mode='w') as f:
dset = f.create_dataset('/data', shape=x.shape, dtype=x.dtype)
da.store(x, dset)
# Save to Zarr
import zarr
z = zarr.open('output.zarr', mode='w', shape=x.shape, dtype=x.dtype, chunks=x.chunks)
da.store(x, z)
```
## Performance Considerations
### Efficient Operations
- Element-wise operations: Very efficient
- Reductions with parallelizable operations: Efficient
- Slicing along chunk boundaries: Efficient
- Matrix operations with good chunk alignment: Efficient
### Expensive Operations
- Slicing across many chunks: Requires data movement
- Operations requiring global sorting: Not well supported
- Extremely irregular access patterns: Poor performance
- Operations with poor chunk alignment: Requires rechunking
### Optimization Tips
**1. Choose Good Chunk Sizes**
```python
# Aim for balanced chunks
# Good: ~100 MB per chunk
x = da.random.random((100000, 10000), chunks=(10000, 10000))
```
**2. Align Chunks for Operations**
```python
# Make sure chunks align for operations
x = da.random.random((10000, 10000), chunks=(1000, 1000))
y = da.random.random((10000, 10000), chunks=(1000, 1000)) # Aligned
z = x + y # Efficient
```
**3. Use Appropriate Scheduler**
```python
# Arrays work well with threaded scheduler (default)
# Shared memory access is efficient
result = x.compute() # Uses threads by default
```
**4. Minimize Data Transfer**
```python
# Better: Compute on each chunk, then transfer results
means = x.mean(axis=1).compute() # Transfers less data
# Worse: Transfer all data then compute
x_numpy = x.compute()
means = x_numpy.mean(axis=1) # Transfers more data
```
## Common Patterns
### Image Processing
```python
import dask.array as da
# Load large image stack
images = da.from_zarr('images.zarr')
# Apply filtering
def apply_gaussian(block):
from scipy.ndimage import gaussian_filter
return gaussian_filter(block, sigma=2)
filtered = da.map_blocks(apply_gaussian, images, dtype=images.dtype)
# Compute statistics
mean_intensity = filtered.mean().compute()
```
### Scientific Computing
```python
# Large-scale numerical simulation
x = da.random.random((100000, 100000), chunks=(10000, 10000))
# Apply iterative computation
for i in range(num_iterations):
x = da.exp(-x) * da.sin(x)
x = x.persist() # Keep in memory for next iteration
# Final result
result = x.compute()
```
### Data Analysis
```python
# Load large dataset
data = da.from_zarr('measurements.zarr')
# Compute statistics
mean = data.mean(axis=0)
std = data.std(axis=0)
normalized = (data - mean) / std
# Save normalized data
da.to_zarr(normalized, 'normalized.zarr')
```
## Integration with Other Tools
### XArray
```python
import xarray as xr
import dask.array as da
# XArray wraps Dask arrays with labeled dimensions
data = da.random.random((1000, 2000, 3000), chunks=(100, 200, 300))
dataset = xr.DataArray(
data,
dims=['time', 'y', 'x'],
coords={'time': range(1000), 'y': range(2000), 'x': range(3000)}
)
```
### Scikit-learn (via Dask-ML)
```python
# Some scikit-learn compatible operations
from dask_ml.preprocessing import StandardScaler
X = da.random.random((10000, 100), chunks=(1000, 100))
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```
## Debugging Tips
### Visualize Task Graph
```python
# Visualize computation graph (for small arrays)
x = da.random.random((100, 100), chunks=(10, 10))
y = x + 1
y.visualize(filename='graph.png')
```
### Check Array Properties
```python
# Inspect before computing
print(f"Shape: {x.shape}")
print(f"Dtype: {x.dtype}")
print(f"Chunks: {x.chunks}")
print(f"Number of tasks: {len(x.__dask_graph__())}")
```
### Test on Small Arrays First
```python
# Test logic on small array
small_x = da.random.random((100, 100), chunks=(50, 50))
result_small = computation(small_x).compute()
# Validate, then scale
large_x = da.random.random((100000, 100000), chunks=(10000, 10000))
result_large = computation(large_x).compute()
```