Initial commit
This commit is contained in:
655
skills/cobrapy/references/api_quick_reference.md
Normal file
655
skills/cobrapy/references/api_quick_reference.md
Normal file
@@ -0,0 +1,655 @@
|
||||
# COBRApy API Quick Reference
|
||||
|
||||
This document provides quick reference for common COBRApy functions, signatures, and usage patterns.
|
||||
|
||||
## Model I/O
|
||||
|
||||
### Loading Models
|
||||
|
||||
```python
|
||||
from cobra.io import load_model, read_sbml_model, load_json_model, load_yaml_model, load_matlab_model
|
||||
|
||||
# Bundled test models
|
||||
model = load_model("textbook") # E. coli core metabolism
|
||||
model = load_model("ecoli") # Full E. coli iJO1366
|
||||
model = load_model("salmonella") # Salmonella LT2
|
||||
|
||||
# From files
|
||||
model = read_sbml_model(filename, f_replace={}, **kwargs)
|
||||
model = load_json_model(filename)
|
||||
model = load_yaml_model(filename)
|
||||
model = load_matlab_model(filename, variable_name=None)
|
||||
```
|
||||
|
||||
### Saving Models
|
||||
|
||||
```python
|
||||
from cobra.io import write_sbml_model, save_json_model, save_yaml_model, save_matlab_model
|
||||
|
||||
write_sbml_model(model, filename, f_replace={}, **kwargs)
|
||||
save_json_model(model, filename, pretty=False, **kwargs)
|
||||
save_yaml_model(model, filename, **kwargs)
|
||||
save_matlab_model(model, filename, **kwargs)
|
||||
```
|
||||
|
||||
## Model Structure
|
||||
|
||||
### Core Classes
|
||||
|
||||
```python
|
||||
from cobra import Model, Reaction, Metabolite, Gene
|
||||
|
||||
# Create model
|
||||
model = Model(id_or_model=None, name=None)
|
||||
|
||||
# Create metabolite
|
||||
metabolite = Metabolite(
|
||||
id=None,
|
||||
formula=None,
|
||||
name="",
|
||||
charge=None,
|
||||
compartment=None
|
||||
)
|
||||
|
||||
# Create reaction
|
||||
reaction = Reaction(
|
||||
id=None,
|
||||
name="",
|
||||
subsystem="",
|
||||
lower_bound=0.0,
|
||||
upper_bound=None
|
||||
)
|
||||
|
||||
# Create gene
|
||||
gene = Gene(id=None, name="", functional=True)
|
||||
```
|
||||
|
||||
### Model Attributes
|
||||
|
||||
```python
|
||||
# Component access (DictList objects)
|
||||
model.reactions # DictList of Reaction objects
|
||||
model.metabolites # DictList of Metabolite objects
|
||||
model.genes # DictList of Gene objects
|
||||
|
||||
# Special reaction lists
|
||||
model.exchanges # Exchange reactions (external transport)
|
||||
model.demands # Demand reactions (metabolite sinks)
|
||||
model.sinks # Sink reactions
|
||||
model.boundary # All boundary reactions
|
||||
|
||||
# Model properties
|
||||
model.objective # Current objective (read/write)
|
||||
model.objective_direction # "max" or "min"
|
||||
model.medium # Growth medium (dict of exchange: bound)
|
||||
model.solver # Optimization solver
|
||||
```
|
||||
|
||||
### DictList Methods
|
||||
|
||||
```python
|
||||
# Access by index
|
||||
item = model.reactions[0]
|
||||
|
||||
# Access by ID
|
||||
item = model.reactions.get_by_id("PFK")
|
||||
|
||||
# Query by string (substring match)
|
||||
items = model.reactions.query("atp") # Case-insensitive search
|
||||
items = model.reactions.query(lambda x: x.subsystem == "Glycolysis")
|
||||
|
||||
# List comprehension
|
||||
items = [r for r in model.reactions if r.lower_bound < 0]
|
||||
|
||||
# Check membership
|
||||
"PFK" in model.reactions
|
||||
```
|
||||
|
||||
## Optimization
|
||||
|
||||
### Basic Optimization
|
||||
|
||||
```python
|
||||
# Full optimization (returns Solution object)
|
||||
solution = model.optimize()
|
||||
|
||||
# Attributes of Solution
|
||||
solution.objective_value # Objective function value
|
||||
solution.status # Optimization status ("optimal", "infeasible", etc.)
|
||||
solution.fluxes # Pandas Series of reaction fluxes
|
||||
solution.shadow_prices # Pandas Series of metabolite shadow prices
|
||||
solution.reduced_costs # Pandas Series of reduced costs
|
||||
|
||||
# Fast optimization (returns float only)
|
||||
objective_value = model.slim_optimize()
|
||||
|
||||
# Change objective
|
||||
model.objective = "ATPM"
|
||||
model.objective = model.reactions.ATPM
|
||||
model.objective = {model.reactions.ATPM: 1.0}
|
||||
|
||||
# Change optimization direction
|
||||
model.objective_direction = "max" # or "min"
|
||||
```
|
||||
|
||||
### Solver Configuration
|
||||
|
||||
```python
|
||||
# Check available solvers
|
||||
from cobra.util.solver import solvers
|
||||
print(solvers)
|
||||
|
||||
# Change solver
|
||||
model.solver = "glpk" # or "cplex", "gurobi", etc.
|
||||
|
||||
# Solver-specific configuration
|
||||
model.solver.configuration.timeout = 60 # seconds
|
||||
model.solver.configuration.verbosity = 1
|
||||
model.solver.configuration.tolerances.feasibility = 1e-9
|
||||
```
|
||||
|
||||
## Flux Analysis
|
||||
|
||||
### Flux Balance Analysis (FBA)
|
||||
|
||||
```python
|
||||
from cobra.flux_analysis import pfba, geometric_fba
|
||||
|
||||
# Parsimonious FBA
|
||||
solution = pfba(model, fraction_of_optimum=1.0, **kwargs)
|
||||
|
||||
# Geometric FBA
|
||||
solution = geometric_fba(model, epsilon=1e-06, max_tries=200)
|
||||
```
|
||||
|
||||
### Flux Variability Analysis (FVA)
|
||||
|
||||
```python
|
||||
from cobra.flux_analysis import flux_variability_analysis
|
||||
|
||||
fva_result = flux_variability_analysis(
|
||||
model,
|
||||
reaction_list=None, # List of reaction IDs or None for all
|
||||
loopless=False, # Eliminate thermodynamically infeasible loops
|
||||
fraction_of_optimum=1.0, # Optimality fraction (0.0-1.0)
|
||||
pfba_factor=None, # Optional pFBA constraint
|
||||
processes=1 # Number of parallel processes
|
||||
)
|
||||
|
||||
# Returns DataFrame with columns: minimum, maximum
|
||||
```
|
||||
|
||||
### Gene and Reaction Deletions
|
||||
|
||||
```python
|
||||
from cobra.flux_analysis import (
|
||||
single_gene_deletion,
|
||||
single_reaction_deletion,
|
||||
double_gene_deletion,
|
||||
double_reaction_deletion
|
||||
)
|
||||
|
||||
# Single deletions
|
||||
results = single_gene_deletion(
|
||||
model,
|
||||
gene_list=None, # None for all genes
|
||||
processes=1,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
results = single_reaction_deletion(
|
||||
model,
|
||||
reaction_list=None, # None for all reactions
|
||||
processes=1,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
# Double deletions
|
||||
results = double_gene_deletion(
|
||||
model,
|
||||
gene_list1=None,
|
||||
gene_list2=None,
|
||||
processes=1,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
results = double_reaction_deletion(
|
||||
model,
|
||||
reaction_list1=None,
|
||||
reaction_list2=None,
|
||||
processes=1,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
# Returns DataFrame with columns: ids, growth, status
|
||||
# For double deletions, index is MultiIndex of gene/reaction pairs
|
||||
```
|
||||
|
||||
### Flux Sampling
|
||||
|
||||
```python
|
||||
from cobra.sampling import sample, OptGPSampler, ACHRSampler
|
||||
|
||||
# Simple interface
|
||||
samples = sample(
|
||||
model,
|
||||
n, # Number of samples
|
||||
method="optgp", # or "achr"
|
||||
thinning=100, # Thinning factor (sample every n iterations)
|
||||
processes=1, # Parallel processes (OptGP only)
|
||||
seed=None # Random seed
|
||||
)
|
||||
|
||||
# Advanced interface with sampler objects
|
||||
sampler = OptGPSampler(model, processes=4, thinning=100)
|
||||
sampler = ACHRSampler(model, thinning=100)
|
||||
|
||||
# Generate samples
|
||||
samples = sampler.sample(n)
|
||||
|
||||
# Validate samples
|
||||
validation = sampler.validate(sampler.samples)
|
||||
# Returns array of 'v' (valid), 'l' (lower bound violation),
|
||||
# 'u' (upper bound violation), 'e' (equality violation)
|
||||
|
||||
# Batch sampling
|
||||
sampler.batch(n_samples, n_batches)
|
||||
```
|
||||
|
||||
### Production Envelopes
|
||||
|
||||
```python
|
||||
from cobra.flux_analysis import production_envelope
|
||||
|
||||
envelope = production_envelope(
|
||||
model,
|
||||
reactions, # List of 1-2 reaction IDs
|
||||
objective=None, # Objective reaction ID (None uses model objective)
|
||||
carbon_sources=None, # Carbon source for yield calculation
|
||||
points=20, # Number of points to calculate
|
||||
threshold=0.01 # Minimum objective value threshold
|
||||
)
|
||||
|
||||
# Returns DataFrame with columns:
|
||||
# - First reaction flux
|
||||
# - Second reaction flux (if provided)
|
||||
# - objective_minimum, objective_maximum
|
||||
# - carbon_yield_minimum, carbon_yield_maximum (if carbon source specified)
|
||||
# - mass_yield_minimum, mass_yield_maximum
|
||||
```
|
||||
|
||||
### Gapfilling
|
||||
|
||||
```python
|
||||
from cobra.flux_analysis import gapfill
|
||||
|
||||
# Basic gapfilling
|
||||
solution = gapfill(
|
||||
model,
|
||||
universal=None, # Universal model with candidate reactions
|
||||
lower_bound=0.05, # Minimum objective flux
|
||||
penalties=None, # Dict of reaction: penalty
|
||||
demand_reactions=True, # Add demand reactions if needed
|
||||
exchange_reactions=False,
|
||||
iterations=1
|
||||
)
|
||||
|
||||
# Returns list of Reaction objects to add
|
||||
|
||||
# Multiple solutions
|
||||
solutions = []
|
||||
for i in range(5):
|
||||
sol = gapfill(model, universal, iterations=1)
|
||||
solutions.append(sol)
|
||||
# Prevent finding same solution by increasing penalties
|
||||
```
|
||||
|
||||
### Other Analysis Methods
|
||||
|
||||
```python
|
||||
from cobra.flux_analysis import (
|
||||
find_blocked_reactions,
|
||||
find_essential_genes,
|
||||
find_essential_reactions
|
||||
)
|
||||
|
||||
# Blocked reactions (cannot carry flux)
|
||||
blocked = find_blocked_reactions(
|
||||
model,
|
||||
reaction_list=None,
|
||||
zero_cutoff=1e-9,
|
||||
open_exchanges=False
|
||||
)
|
||||
|
||||
# Essential genes/reactions
|
||||
essential_genes = find_essential_genes(model, threshold=0.01)
|
||||
essential_reactions = find_essential_reactions(model, threshold=0.01)
|
||||
```
|
||||
|
||||
## Media and Boundary Conditions
|
||||
|
||||
### Medium Management
|
||||
|
||||
```python
|
||||
# Get current medium (returns dict)
|
||||
medium = model.medium
|
||||
|
||||
# Set medium (must reassign entire dict)
|
||||
medium = model.medium
|
||||
medium["EX_glc__D_e"] = 10.0
|
||||
medium["EX_o2_e"] = 20.0
|
||||
model.medium = medium
|
||||
|
||||
# Alternative: individual modification
|
||||
with model:
|
||||
model.reactions.EX_glc__D_e.lower_bound = -10.0
|
||||
```
|
||||
|
||||
### Minimal Media
|
||||
|
||||
```python
|
||||
from cobra.medium import minimal_medium
|
||||
|
||||
min_medium = minimal_medium(
|
||||
model,
|
||||
min_objective_value=0.1, # Minimum growth rate
|
||||
minimize_components=False, # If True, uses MILP (slower)
|
||||
open_exchanges=False, # Open all exchanges before optimization
|
||||
exports=False, # Allow metabolite export
|
||||
penalties=None # Dict of exchange: penalty
|
||||
)
|
||||
|
||||
# Returns Series of exchange reactions with fluxes
|
||||
```
|
||||
|
||||
### Boundary Reactions
|
||||
|
||||
```python
|
||||
# Add boundary reaction
|
||||
model.add_boundary(
|
||||
metabolite,
|
||||
type="exchange", # or "demand", "sink"
|
||||
reaction_id=None, # Auto-generated if None
|
||||
lb=None,
|
||||
ub=None,
|
||||
sbo_term=None
|
||||
)
|
||||
|
||||
# Access boundary reactions
|
||||
exchanges = model.exchanges # System boundary
|
||||
demands = model.demands # Intracellular removal
|
||||
sinks = model.sinks # Intracellular exchange
|
||||
boundaries = model.boundary # All boundary reactions
|
||||
```
|
||||
|
||||
## Model Manipulation
|
||||
|
||||
### Adding Components
|
||||
|
||||
```python
|
||||
# Add reactions
|
||||
model.add_reactions([reaction1, reaction2, ...])
|
||||
model.add_reaction(reaction)
|
||||
|
||||
# Add metabolites
|
||||
reaction.add_metabolites({
|
||||
metabolite1: -1.0, # Consumed (negative stoichiometry)
|
||||
metabolite2: 1.0 # Produced (positive stoichiometry)
|
||||
})
|
||||
|
||||
# Add metabolites to model
|
||||
model.add_metabolites([metabolite1, metabolite2, ...])
|
||||
|
||||
# Add genes (usually automatic via gene_reaction_rule)
|
||||
model.genes += [gene1, gene2, ...]
|
||||
```
|
||||
|
||||
### Removing Components
|
||||
|
||||
```python
|
||||
# Remove reactions
|
||||
model.remove_reactions([reaction1, reaction2, ...])
|
||||
model.remove_reactions(["PFK", "FBA"])
|
||||
|
||||
# Remove metabolites (removes from reactions too)
|
||||
model.remove_metabolites([metabolite1, metabolite2, ...])
|
||||
|
||||
# Remove genes (usually via gene_reaction_rule)
|
||||
model.genes.remove(gene)
|
||||
```
|
||||
|
||||
### Modifying Reactions
|
||||
|
||||
```python
|
||||
# Set bounds
|
||||
reaction.bounds = (lower, upper)
|
||||
reaction.lower_bound = 0.0
|
||||
reaction.upper_bound = 1000.0
|
||||
|
||||
# Modify stoichiometry
|
||||
reaction.add_metabolites({metabolite: 1.0})
|
||||
reaction.subtract_metabolites({metabolite: 1.0})
|
||||
|
||||
# Change gene-reaction rule
|
||||
reaction.gene_reaction_rule = "(gene1 and gene2) or gene3"
|
||||
|
||||
# Knock out
|
||||
reaction.knock_out()
|
||||
gene.knock_out()
|
||||
```
|
||||
|
||||
### Model Copying
|
||||
|
||||
```python
|
||||
# Deep copy (independent model)
|
||||
model_copy = model.copy()
|
||||
|
||||
# Copy specific reactions
|
||||
new_model = Model("subset")
|
||||
reactions_to_copy = [model.reactions.PFK, model.reactions.FBA]
|
||||
new_model.add_reactions(reactions_to_copy)
|
||||
```
|
||||
|
||||
## Context Management
|
||||
|
||||
Use context managers for temporary modifications:
|
||||
|
||||
```python
|
||||
# Changes automatically revert after with block
|
||||
with model:
|
||||
model.objective = "ATPM"
|
||||
model.reactions.EX_glc__D_e.lower_bound = -5.0
|
||||
model.genes.b0008.knock_out()
|
||||
solution = model.optimize()
|
||||
|
||||
# Model state restored here
|
||||
|
||||
# Multiple nested contexts
|
||||
with model:
|
||||
model.objective = "ATPM"
|
||||
with model:
|
||||
model.genes.b0008.knock_out()
|
||||
# Both modifications active
|
||||
# Only objective change active
|
||||
|
||||
# Context management with reactions
|
||||
with model:
|
||||
model.reactions.PFK.knock_out()
|
||||
# Equivalent to: reaction.lower_bound = reaction.upper_bound = 0
|
||||
```
|
||||
|
||||
## Reaction and Metabolite Properties
|
||||
|
||||
### Reaction Attributes
|
||||
|
||||
```python
|
||||
reaction.id # Unique identifier
|
||||
reaction.name # Human-readable name
|
||||
reaction.subsystem # Pathway/subsystem
|
||||
reaction.bounds # (lower_bound, upper_bound)
|
||||
reaction.lower_bound
|
||||
reaction.upper_bound
|
||||
reaction.reversibility # Boolean (lower_bound < 0)
|
||||
reaction.gene_reaction_rule # GPR string
|
||||
reaction.genes # Set of associated Gene objects
|
||||
reaction.metabolites # Dict of {metabolite: stoichiometry}
|
||||
|
||||
# Methods
|
||||
reaction.reaction # Stoichiometric equation string
|
||||
reaction.build_reaction_string() # Same as above
|
||||
reaction.check_mass_balance() # Returns imbalances or empty dict
|
||||
reaction.get_coefficient(metabolite_id)
|
||||
reaction.add_metabolites({metabolite: coeff})
|
||||
reaction.subtract_metabolites({metabolite: coeff})
|
||||
reaction.knock_out()
|
||||
```
|
||||
|
||||
### Metabolite Attributes
|
||||
|
||||
```python
|
||||
metabolite.id # Unique identifier
|
||||
metabolite.name # Human-readable name
|
||||
metabolite.formula # Chemical formula
|
||||
metabolite.charge # Charge
|
||||
metabolite.compartment # Compartment ID
|
||||
metabolite.reactions # FrozenSet of associated reactions
|
||||
|
||||
# Methods
|
||||
metabolite.summary() # Print production/consumption
|
||||
metabolite.copy()
|
||||
```
|
||||
|
||||
### Gene Attributes
|
||||
|
||||
```python
|
||||
gene.id # Unique identifier
|
||||
gene.name # Human-readable name
|
||||
gene.functional # Boolean activity status
|
||||
gene.reactions # FrozenSet of associated reactions
|
||||
|
||||
# Methods
|
||||
gene.knock_out()
|
||||
```
|
||||
|
||||
## Model Validation
|
||||
|
||||
### Consistency Checking
|
||||
|
||||
```python
|
||||
from cobra.manipulation import check_mass_balance, check_metabolite_compartment_formula
|
||||
|
||||
# Check all reactions for mass balance
|
||||
unbalanced = {}
|
||||
for reaction in model.reactions:
|
||||
balance = reaction.check_mass_balance()
|
||||
if balance:
|
||||
unbalanced[reaction.id] = balance
|
||||
|
||||
# Check metabolite formulas are valid
|
||||
check_metabolite_compartment_formula(model)
|
||||
```
|
||||
|
||||
### Model Statistics
|
||||
|
||||
```python
|
||||
# Basic stats
|
||||
print(f"Reactions: {len(model.reactions)}")
|
||||
print(f"Metabolites: {len(model.metabolites)}")
|
||||
print(f"Genes: {len(model.genes)}")
|
||||
|
||||
# Advanced stats
|
||||
print(f"Exchanges: {len(model.exchanges)}")
|
||||
print(f"Demands: {len(model.demands)}")
|
||||
|
||||
# Blocked reactions
|
||||
from cobra.flux_analysis import find_blocked_reactions
|
||||
blocked = find_blocked_reactions(model)
|
||||
print(f"Blocked reactions: {len(blocked)}")
|
||||
|
||||
# Essential genes
|
||||
from cobra.flux_analysis import find_essential_genes
|
||||
essential = find_essential_genes(model)
|
||||
print(f"Essential genes: {len(essential)}")
|
||||
```
|
||||
|
||||
## Summary Methods
|
||||
|
||||
```python
|
||||
# Model summary
|
||||
model.summary() # Overall model info
|
||||
|
||||
# Metabolite summary
|
||||
model.metabolites.atp_c.summary()
|
||||
|
||||
# Reaction summary
|
||||
model.reactions.PFK.summary()
|
||||
|
||||
# Summary with FVA
|
||||
model.summary(fva=0.95) # Include FVA at 95% optimality
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Batch Analysis Pattern
|
||||
|
||||
```python
|
||||
results = []
|
||||
for condition in conditions:
|
||||
with model:
|
||||
# Apply condition
|
||||
setup_condition(model, condition)
|
||||
|
||||
# Analyze
|
||||
solution = model.optimize()
|
||||
|
||||
# Store result
|
||||
results.append({
|
||||
"condition": condition,
|
||||
"growth": solution.objective_value,
|
||||
"status": solution.status
|
||||
})
|
||||
|
||||
df = pd.DataFrame(results)
|
||||
```
|
||||
|
||||
### Systematic Knockout Pattern
|
||||
|
||||
```python
|
||||
knockout_results = []
|
||||
for gene in model.genes:
|
||||
with model:
|
||||
gene.knock_out()
|
||||
|
||||
solution = model.optimize()
|
||||
|
||||
knockout_results.append({
|
||||
"gene": gene.id,
|
||||
"growth": solution.objective_value if solution.status == "optimal" else 0,
|
||||
"status": solution.status
|
||||
})
|
||||
|
||||
df = pd.DataFrame(knockout_results)
|
||||
```
|
||||
|
||||
### Parameter Scan Pattern
|
||||
|
||||
```python
|
||||
parameter_values = np.linspace(0, 20, 21)
|
||||
results = []
|
||||
|
||||
for value in parameter_values:
|
||||
with model:
|
||||
model.reactions.EX_glc__D_e.lower_bound = -value
|
||||
|
||||
solution = model.optimize()
|
||||
|
||||
results.append({
|
||||
"glucose_uptake": value,
|
||||
"growth": solution.objective_value,
|
||||
"acetate_secretion": solution.fluxes["EX_ac_e"]
|
||||
})
|
||||
|
||||
df = pd.DataFrame(results)
|
||||
```
|
||||
|
||||
This quick reference covers the most commonly used COBRApy functions and patterns. For complete API documentation, see https://cobrapy.readthedocs.io/
|
||||
Reference in New Issue
Block a user