Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,655 @@
# COBRApy API Quick Reference
This document provides quick reference for common COBRApy functions, signatures, and usage patterns.
## Model I/O
### Loading Models
```python
from cobra.io import load_model, read_sbml_model, load_json_model, load_yaml_model, load_matlab_model
# Bundled test models
model = load_model("textbook") # E. coli core metabolism
model = load_model("ecoli") # Full E. coli iJO1366
model = load_model("salmonella") # Salmonella LT2
# From files
model = read_sbml_model(filename, f_replace={}, **kwargs)
model = load_json_model(filename)
model = load_yaml_model(filename)
model = load_matlab_model(filename, variable_name=None)
```
### Saving Models
```python
from cobra.io import write_sbml_model, save_json_model, save_yaml_model, save_matlab_model
write_sbml_model(model, filename, f_replace={}, **kwargs)
save_json_model(model, filename, pretty=False, **kwargs)
save_yaml_model(model, filename, **kwargs)
save_matlab_model(model, filename, **kwargs)
```
## Model Structure
### Core Classes
```python
from cobra import Model, Reaction, Metabolite, Gene
# Create model
model = Model(id_or_model=None, name=None)
# Create metabolite
metabolite = Metabolite(
id=None,
formula=None,
name="",
charge=None,
compartment=None
)
# Create reaction
reaction = Reaction(
id=None,
name="",
subsystem="",
lower_bound=0.0,
upper_bound=None
)
# Create gene
gene = Gene(id=None, name="", functional=True)
```
### Model Attributes
```python
# Component access (DictList objects)
model.reactions # DictList of Reaction objects
model.metabolites # DictList of Metabolite objects
model.genes # DictList of Gene objects
# Special reaction lists
model.exchanges # Exchange reactions (external transport)
model.demands # Demand reactions (metabolite sinks)
model.sinks # Sink reactions
model.boundary # All boundary reactions
# Model properties
model.objective # Current objective (read/write)
model.objective_direction # "max" or "min"
model.medium # Growth medium (dict of exchange: bound)
model.solver # Optimization solver
```
### DictList Methods
```python
# Access by index
item = model.reactions[0]
# Access by ID
item = model.reactions.get_by_id("PFK")
# Query by string (substring match)
items = model.reactions.query("atp") # Case-insensitive search
items = model.reactions.query(lambda x: x.subsystem == "Glycolysis")
# List comprehension
items = [r for r in model.reactions if r.lower_bound < 0]
# Check membership
"PFK" in model.reactions
```
## Optimization
### Basic Optimization
```python
# Full optimization (returns Solution object)
solution = model.optimize()
# Attributes of Solution
solution.objective_value # Objective function value
solution.status # Optimization status ("optimal", "infeasible", etc.)
solution.fluxes # Pandas Series of reaction fluxes
solution.shadow_prices # Pandas Series of metabolite shadow prices
solution.reduced_costs # Pandas Series of reduced costs
# Fast optimization (returns float only)
objective_value = model.slim_optimize()
# Change objective
model.objective = "ATPM"
model.objective = model.reactions.ATPM
model.objective = {model.reactions.ATPM: 1.0}
# Change optimization direction
model.objective_direction = "max" # or "min"
```
### Solver Configuration
```python
# Check available solvers
from cobra.util.solver import solvers
print(solvers)
# Change solver
model.solver = "glpk" # or "cplex", "gurobi", etc.
# Solver-specific configuration
model.solver.configuration.timeout = 60 # seconds
model.solver.configuration.verbosity = 1
model.solver.configuration.tolerances.feasibility = 1e-9
```
## Flux Analysis
### Flux Balance Analysis (FBA)
```python
from cobra.flux_analysis import pfba, geometric_fba
# Parsimonious FBA
solution = pfba(model, fraction_of_optimum=1.0, **kwargs)
# Geometric FBA
solution = geometric_fba(model, epsilon=1e-06, max_tries=200)
```
### Flux Variability Analysis (FVA)
```python
from cobra.flux_analysis import flux_variability_analysis
fva_result = flux_variability_analysis(
model,
reaction_list=None, # List of reaction IDs or None for all
loopless=False, # Eliminate thermodynamically infeasible loops
fraction_of_optimum=1.0, # Optimality fraction (0.0-1.0)
pfba_factor=None, # Optional pFBA constraint
processes=1 # Number of parallel processes
)
# Returns DataFrame with columns: minimum, maximum
```
### Gene and Reaction Deletions
```python
from cobra.flux_analysis import (
single_gene_deletion,
single_reaction_deletion,
double_gene_deletion,
double_reaction_deletion
)
# Single deletions
results = single_gene_deletion(
model,
gene_list=None, # None for all genes
processes=1,
**kwargs
)
results = single_reaction_deletion(
model,
reaction_list=None, # None for all reactions
processes=1,
**kwargs
)
# Double deletions
results = double_gene_deletion(
model,
gene_list1=None,
gene_list2=None,
processes=1,
**kwargs
)
results = double_reaction_deletion(
model,
reaction_list1=None,
reaction_list2=None,
processes=1,
**kwargs
)
# Returns DataFrame with columns: ids, growth, status
# For double deletions, index is MultiIndex of gene/reaction pairs
```
### Flux Sampling
```python
from cobra.sampling import sample, OptGPSampler, ACHRSampler
# Simple interface
samples = sample(
model,
n, # Number of samples
method="optgp", # or "achr"
thinning=100, # Thinning factor (sample every n iterations)
processes=1, # Parallel processes (OptGP only)
seed=None # Random seed
)
# Advanced interface with sampler objects
sampler = OptGPSampler(model, processes=4, thinning=100)
sampler = ACHRSampler(model, thinning=100)
# Generate samples
samples = sampler.sample(n)
# Validate samples
validation = sampler.validate(sampler.samples)
# Returns array of 'v' (valid), 'l' (lower bound violation),
# 'u' (upper bound violation), 'e' (equality violation)
# Batch sampling
sampler.batch(n_samples, n_batches)
```
### Production Envelopes
```python
from cobra.flux_analysis import production_envelope
envelope = production_envelope(
model,
reactions, # List of 1-2 reaction IDs
objective=None, # Objective reaction ID (None uses model objective)
carbon_sources=None, # Carbon source for yield calculation
points=20, # Number of points to calculate
threshold=0.01 # Minimum objective value threshold
)
# Returns DataFrame with columns:
# - First reaction flux
# - Second reaction flux (if provided)
# - objective_minimum, objective_maximum
# - carbon_yield_minimum, carbon_yield_maximum (if carbon source specified)
# - mass_yield_minimum, mass_yield_maximum
```
### Gapfilling
```python
from cobra.flux_analysis import gapfill
# Basic gapfilling
solution = gapfill(
model,
universal=None, # Universal model with candidate reactions
lower_bound=0.05, # Minimum objective flux
penalties=None, # Dict of reaction: penalty
demand_reactions=True, # Add demand reactions if needed
exchange_reactions=False,
iterations=1
)
# Returns list of Reaction objects to add
# Multiple solutions
solutions = []
for i in range(5):
sol = gapfill(model, universal, iterations=1)
solutions.append(sol)
# Prevent finding same solution by increasing penalties
```
### Other Analysis Methods
```python
from cobra.flux_analysis import (
find_blocked_reactions,
find_essential_genes,
find_essential_reactions
)
# Blocked reactions (cannot carry flux)
blocked = find_blocked_reactions(
model,
reaction_list=None,
zero_cutoff=1e-9,
open_exchanges=False
)
# Essential genes/reactions
essential_genes = find_essential_genes(model, threshold=0.01)
essential_reactions = find_essential_reactions(model, threshold=0.01)
```
## Media and Boundary Conditions
### Medium Management
```python
# Get current medium (returns dict)
medium = model.medium
# Set medium (must reassign entire dict)
medium = model.medium
medium["EX_glc__D_e"] = 10.0
medium["EX_o2_e"] = 20.0
model.medium = medium
# Alternative: individual modification
with model:
model.reactions.EX_glc__D_e.lower_bound = -10.0
```
### Minimal Media
```python
from cobra.medium import minimal_medium
min_medium = minimal_medium(
model,
min_objective_value=0.1, # Minimum growth rate
minimize_components=False, # If True, uses MILP (slower)
open_exchanges=False, # Open all exchanges before optimization
exports=False, # Allow metabolite export
penalties=None # Dict of exchange: penalty
)
# Returns Series of exchange reactions with fluxes
```
### Boundary Reactions
```python
# Add boundary reaction
model.add_boundary(
metabolite,
type="exchange", # or "demand", "sink"
reaction_id=None, # Auto-generated if None
lb=None,
ub=None,
sbo_term=None
)
# Access boundary reactions
exchanges = model.exchanges # System boundary
demands = model.demands # Intracellular removal
sinks = model.sinks # Intracellular exchange
boundaries = model.boundary # All boundary reactions
```
## Model Manipulation
### Adding Components
```python
# Add reactions
model.add_reactions([reaction1, reaction2, ...])
model.add_reaction(reaction)
# Add metabolites
reaction.add_metabolites({
metabolite1: -1.0, # Consumed (negative stoichiometry)
metabolite2: 1.0 # Produced (positive stoichiometry)
})
# Add metabolites to model
model.add_metabolites([metabolite1, metabolite2, ...])
# Add genes (usually automatic via gene_reaction_rule)
model.genes += [gene1, gene2, ...]
```
### Removing Components
```python
# Remove reactions
model.remove_reactions([reaction1, reaction2, ...])
model.remove_reactions(["PFK", "FBA"])
# Remove metabolites (removes from reactions too)
model.remove_metabolites([metabolite1, metabolite2, ...])
# Remove genes (usually via gene_reaction_rule)
model.genes.remove(gene)
```
### Modifying Reactions
```python
# Set bounds
reaction.bounds = (lower, upper)
reaction.lower_bound = 0.0
reaction.upper_bound = 1000.0
# Modify stoichiometry
reaction.add_metabolites({metabolite: 1.0})
reaction.subtract_metabolites({metabolite: 1.0})
# Change gene-reaction rule
reaction.gene_reaction_rule = "(gene1 and gene2) or gene3"
# Knock out
reaction.knock_out()
gene.knock_out()
```
### Model Copying
```python
# Deep copy (independent model)
model_copy = model.copy()
# Copy specific reactions
new_model = Model("subset")
reactions_to_copy = [model.reactions.PFK, model.reactions.FBA]
new_model.add_reactions(reactions_to_copy)
```
## Context Management
Use context managers for temporary modifications:
```python
# Changes automatically revert after with block
with model:
model.objective = "ATPM"
model.reactions.EX_glc__D_e.lower_bound = -5.0
model.genes.b0008.knock_out()
solution = model.optimize()
# Model state restored here
# Multiple nested contexts
with model:
model.objective = "ATPM"
with model:
model.genes.b0008.knock_out()
# Both modifications active
# Only objective change active
# Context management with reactions
with model:
model.reactions.PFK.knock_out()
# Equivalent to: reaction.lower_bound = reaction.upper_bound = 0
```
## Reaction and Metabolite Properties
### Reaction Attributes
```python
reaction.id # Unique identifier
reaction.name # Human-readable name
reaction.subsystem # Pathway/subsystem
reaction.bounds # (lower_bound, upper_bound)
reaction.lower_bound
reaction.upper_bound
reaction.reversibility # Boolean (lower_bound < 0)
reaction.gene_reaction_rule # GPR string
reaction.genes # Set of associated Gene objects
reaction.metabolites # Dict of {metabolite: stoichiometry}
# Methods
reaction.reaction # Stoichiometric equation string
reaction.build_reaction_string() # Same as above
reaction.check_mass_balance() # Returns imbalances or empty dict
reaction.get_coefficient(metabolite_id)
reaction.add_metabolites({metabolite: coeff})
reaction.subtract_metabolites({metabolite: coeff})
reaction.knock_out()
```
### Metabolite Attributes
```python
metabolite.id # Unique identifier
metabolite.name # Human-readable name
metabolite.formula # Chemical formula
metabolite.charge # Charge
metabolite.compartment # Compartment ID
metabolite.reactions # FrozenSet of associated reactions
# Methods
metabolite.summary() # Print production/consumption
metabolite.copy()
```
### Gene Attributes
```python
gene.id # Unique identifier
gene.name # Human-readable name
gene.functional # Boolean activity status
gene.reactions # FrozenSet of associated reactions
# Methods
gene.knock_out()
```
## Model Validation
### Consistency Checking
```python
from cobra.manipulation import check_mass_balance, check_metabolite_compartment_formula
# Check all reactions for mass balance
unbalanced = {}
for reaction in model.reactions:
balance = reaction.check_mass_balance()
if balance:
unbalanced[reaction.id] = balance
# Check metabolite formulas are valid
check_metabolite_compartment_formula(model)
```
### Model Statistics
```python
# Basic stats
print(f"Reactions: {len(model.reactions)}")
print(f"Metabolites: {len(model.metabolites)}")
print(f"Genes: {len(model.genes)}")
# Advanced stats
print(f"Exchanges: {len(model.exchanges)}")
print(f"Demands: {len(model.demands)}")
# Blocked reactions
from cobra.flux_analysis import find_blocked_reactions
blocked = find_blocked_reactions(model)
print(f"Blocked reactions: {len(blocked)}")
# Essential genes
from cobra.flux_analysis import find_essential_genes
essential = find_essential_genes(model)
print(f"Essential genes: {len(essential)}")
```
## Summary Methods
```python
# Model summary
model.summary() # Overall model info
# Metabolite summary
model.metabolites.atp_c.summary()
# Reaction summary
model.reactions.PFK.summary()
# Summary with FVA
model.summary(fva=0.95) # Include FVA at 95% optimality
```
## Common Patterns
### Batch Analysis Pattern
```python
results = []
for condition in conditions:
with model:
# Apply condition
setup_condition(model, condition)
# Analyze
solution = model.optimize()
# Store result
results.append({
"condition": condition,
"growth": solution.objective_value,
"status": solution.status
})
df = pd.DataFrame(results)
```
### Systematic Knockout Pattern
```python
knockout_results = []
for gene in model.genes:
with model:
gene.knock_out()
solution = model.optimize()
knockout_results.append({
"gene": gene.id,
"growth": solution.objective_value if solution.status == "optimal" else 0,
"status": solution.status
})
df = pd.DataFrame(knockout_results)
```
### Parameter Scan Pattern
```python
parameter_values = np.linspace(0, 20, 21)
results = []
for value in parameter_values:
with model:
model.reactions.EX_glc__D_e.lower_bound = -value
solution = model.optimize()
results.append({
"glucose_uptake": value,
"growth": solution.objective_value,
"acetate_secretion": solution.fluxes["EX_ac_e"]
})
df = pd.DataFrame(results)
```
This quick reference covers the most commonly used COBRApy functions and patterns. For complete API documentation, see https://cobrapy.readthedocs.io/

View File

@@ -0,0 +1,593 @@
# COBRApy Comprehensive Workflows
This document provides detailed step-by-step workflows for common COBRApy tasks in metabolic modeling.
## Workflow 1: Complete Knockout Study with Visualization
This workflow demonstrates how to perform a comprehensive gene knockout study and visualize the results.
```python
import pandas as pd
import matplotlib.pyplot as plt
from cobra.io import load_model
from cobra.flux_analysis import single_gene_deletion, double_gene_deletion
# Step 1: Load model
model = load_model("ecoli")
print(f"Loaded model: {model.id}")
print(f"Model contains {len(model.reactions)} reactions, {len(model.metabolites)} metabolites, {len(model.genes)} genes")
# Step 2: Get baseline growth rate
baseline = model.slim_optimize()
print(f"Baseline growth rate: {baseline:.3f} /h")
# Step 3: Perform single gene deletions
print("Performing single gene deletions...")
single_results = single_gene_deletion(model)
# Step 4: Classify genes by impact
essential_genes = single_results[single_results["growth"] < 0.01]
severely_impaired = single_results[(single_results["growth"] >= 0.01) &
(single_results["growth"] < 0.5 * baseline)]
moderately_impaired = single_results[(single_results["growth"] >= 0.5 * baseline) &
(single_results["growth"] < 0.9 * baseline)]
neutral_genes = single_results[single_results["growth"] >= 0.9 * baseline]
print(f"\nSingle Deletion Results:")
print(f" Essential genes: {len(essential_genes)}")
print(f" Severely impaired: {len(severely_impaired)}")
print(f" Moderately impaired: {len(moderately_impaired)}")
print(f" Neutral genes: {len(neutral_genes)}")
# Step 5: Visualize distribution
fig, ax = plt.subplots(figsize=(10, 6))
single_results["growth"].hist(bins=50, ax=ax)
ax.axvline(baseline, color='r', linestyle='--', label='Baseline')
ax.set_xlabel("Growth rate (/h)")
ax.set_ylabel("Number of genes")
ax.set_title("Distribution of Growth Rates After Single Gene Deletions")
ax.legend()
plt.tight_layout()
plt.savefig("single_deletion_distribution.png", dpi=300)
# Step 6: Identify gene pairs for double deletions
# Focus on non-essential genes to find synthetic lethals
target_genes = single_results[single_results["growth"] >= 0.5 * baseline].index.tolist()
target_genes = [list(gene)[0] for gene in target_genes[:50]] # Limit for performance
print(f"\nPerforming double deletions on {len(target_genes)} genes...")
double_results = double_gene_deletion(
model,
gene_list1=target_genes,
processes=4
)
# Step 7: Find synthetic lethal pairs
synthetic_lethals = double_results[
(double_results["growth"] < 0.01) &
(single_results.loc[double_results.index.get_level_values(0)]["growth"].values >= 0.5 * baseline) &
(single_results.loc[double_results.index.get_level_values(1)]["growth"].values >= 0.5 * baseline)
]
print(f"Found {len(synthetic_lethals)} synthetic lethal gene pairs")
print("\nTop 10 synthetic lethal pairs:")
print(synthetic_lethals.head(10))
# Step 8: Export results
single_results.to_csv("single_gene_deletions.csv")
double_results.to_csv("double_gene_deletions.csv")
synthetic_lethals.to_csv("synthetic_lethals.csv")
```
## Workflow 2: Media Design and Optimization
This workflow shows how to systematically design growth media and find minimal media compositions.
```python
from cobra.io import load_model
from cobra.medium import minimal_medium
import pandas as pd
# Step 1: Load model and check current medium
model = load_model("ecoli")
current_medium = model.medium
print("Current medium composition:")
for exchange, bound in current_medium.items():
metabolite_id = exchange.replace("EX_", "").replace("_e", "")
print(f" {metabolite_id}: {bound:.2f} mmol/gDW/h")
# Step 2: Get baseline growth
baseline_growth = model.slim_optimize()
print(f"\nBaseline growth rate: {baseline_growth:.3f} /h")
# Step 3: Calculate minimal medium for different growth targets
growth_targets = [0.25, 0.5, 0.75, 1.0]
minimal_media = {}
for fraction in growth_targets:
target_growth = baseline_growth * fraction
print(f"\nCalculating minimal medium for {fraction*100:.0f}% growth ({target_growth:.3f} /h)...")
min_medium = minimal_medium(
model,
target_growth,
minimize_components=True,
open_exchanges=True
)
minimal_media[fraction] = min_medium
print(f" Required components: {len(min_medium)}")
print(f" Components: {list(min_medium.index)}")
# Step 4: Compare media compositions
media_df = pd.DataFrame(minimal_media).fillna(0)
media_df.to_csv("minimal_media_comparison.csv")
# Step 5: Test aerobic vs anaerobic conditions
print("\n--- Aerobic vs Anaerobic Comparison ---")
# Aerobic
model_aerobic = model.copy()
aerobic_growth = model_aerobic.slim_optimize()
aerobic_medium = minimal_medium(model_aerobic, aerobic_growth * 0.9, minimize_components=True)
# Anaerobic
model_anaerobic = model.copy()
medium_anaerobic = model_anaerobic.medium
medium_anaerobic["EX_o2_e"] = 0.0
model_anaerobic.medium = medium_anaerobic
anaerobic_growth = model_anaerobic.slim_optimize()
anaerobic_medium = minimal_medium(model_anaerobic, anaerobic_growth * 0.9, minimize_components=True)
print(f"Aerobic growth: {aerobic_growth:.3f} /h (requires {len(aerobic_medium)} components)")
print(f"Anaerobic growth: {anaerobic_growth:.3f} /h (requires {len(anaerobic_medium)} components)")
# Step 6: Identify unique requirements
aerobic_only = set(aerobic_medium.index) - set(anaerobic_medium.index)
anaerobic_only = set(anaerobic_medium.index) - set(aerobic_medium.index)
shared = set(aerobic_medium.index) & set(anaerobic_medium.index)
print(f"\nShared components: {len(shared)}")
print(f"Aerobic-only: {aerobic_only}")
print(f"Anaerobic-only: {anaerobic_only}")
# Step 7: Test custom medium
print("\n--- Testing Custom Medium ---")
custom_medium = {
"EX_glc__D_e": 10.0, # Glucose
"EX_o2_e": 20.0, # Oxygen
"EX_nh4_e": 5.0, # Ammonium
"EX_pi_e": 5.0, # Phosphate
"EX_so4_e": 1.0, # Sulfate
}
with model:
model.medium = custom_medium
custom_growth = model.optimize().objective_value
print(f"Growth on custom medium: {custom_growth:.3f} /h")
# Check which nutrients are limiting
for exchange in custom_medium:
with model:
# Double the uptake rate
medium_test = model.medium
medium_test[exchange] *= 2
model.medium = medium_test
test_growth = model.optimize().objective_value
improvement = (test_growth - custom_growth) / custom_growth * 100
if improvement > 1:
print(f" {exchange}: +{improvement:.1f}% growth when doubled (LIMITING)")
```
## Workflow 3: Flux Space Exploration with Sampling
This workflow demonstrates comprehensive flux space analysis using FVA and sampling.
```python
from cobra.io import load_model
from cobra.flux_analysis import flux_variability_analysis
from cobra.sampling import sample
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Step 1: Load model
model = load_model("ecoli")
baseline = model.slim_optimize()
print(f"Baseline growth: {baseline:.3f} /h")
# Step 2: Perform FVA at optimal growth
print("\nPerforming FVA at optimal growth...")
fva_optimal = flux_variability_analysis(model, fraction_of_optimum=1.0)
# Step 3: Identify reactions with flexibility
fva_optimal["range"] = fva_optimal["maximum"] - fva_optimal["minimum"]
fva_optimal["relative_range"] = fva_optimal["range"] / (fva_optimal["maximum"].abs() + 1e-9)
flexible_reactions = fva_optimal[fva_optimal["range"] > 1.0].sort_values("range", ascending=False)
print(f"\nFound {len(flexible_reactions)} reactions with >1.0 mmol/gDW/h flexibility")
print("\nTop 10 most flexible reactions:")
print(flexible_reactions.head(10)[["minimum", "maximum", "range"]])
# Step 4: Perform FVA at suboptimal growth (90%)
print("\nPerforming FVA at 90% optimal growth...")
fva_suboptimal = flux_variability_analysis(model, fraction_of_optimum=0.9)
fva_suboptimal["range"] = fva_suboptimal["maximum"] - fva_suboptimal["minimum"]
# Step 5: Compare flexibility at different optimality levels
comparison = pd.DataFrame({
"range_100": fva_optimal["range"],
"range_90": fva_suboptimal["range"]
})
comparison["range_increase"] = comparison["range_90"] - comparison["range_100"]
print("\nReactions with largest increase in flexibility at suboptimality:")
print(comparison.sort_values("range_increase", ascending=False).head(10))
# Step 6: Perform flux sampling
print("\nPerforming flux sampling (1000 samples)...")
samples = sample(model, n=1000, method="optgp", processes=4)
# Step 7: Analyze sampling results for key reactions
key_reactions = ["PFK", "FBA", "TPI", "GAPD", "PGK", "PGM", "ENO", "PYK"]
available_key_reactions = [r for r in key_reactions if r in samples.columns]
if available_key_reactions:
fig, axes = plt.subplots(2, 4, figsize=(16, 8))
axes = axes.flatten()
for idx, reaction_id in enumerate(available_key_reactions[:8]):
ax = axes[idx]
samples[reaction_id].hist(bins=30, ax=ax, alpha=0.7)
# Overlay FVA bounds
fva_min = fva_optimal.loc[reaction_id, "minimum"]
fva_max = fva_optimal.loc[reaction_id, "maximum"]
ax.axvline(fva_min, color='r', linestyle='--', label='FVA min')
ax.axvline(fva_max, color='r', linestyle='--', label='FVA max')
ax.set_xlabel("Flux (mmol/gDW/h)")
ax.set_ylabel("Frequency")
ax.set_title(reaction_id)
if idx == 0:
ax.legend()
plt.tight_layout()
plt.savefig("flux_distributions.png", dpi=300)
# Step 8: Calculate correlation between reactions
print("\nCalculating flux correlations...")
correlation_matrix = samples[available_key_reactions].corr()
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap="coolwarm",
center=0, ax=ax, square=True)
ax.set_title("Flux Correlations Between Key Glycolysis Reactions")
plt.tight_layout()
plt.savefig("flux_correlations.png", dpi=300)
# Step 9: Identify reaction modules (highly correlated groups)
print("\nHighly correlated reaction pairs (|r| > 0.9):")
for i in range(len(correlation_matrix)):
for j in range(i+1, len(correlation_matrix)):
corr = correlation_matrix.iloc[i, j]
if abs(corr) > 0.9:
print(f" {correlation_matrix.index[i]} <-> {correlation_matrix.columns[j]}: {corr:.3f}")
# Step 10: Export all results
fva_optimal.to_csv("fva_optimal.csv")
fva_suboptimal.to_csv("fva_suboptimal.csv")
samples.to_csv("flux_samples.csv")
correlation_matrix.to_csv("flux_correlations.csv")
```
## Workflow 4: Production Strain Design
This workflow demonstrates how to design a production strain for a target metabolite.
```python
from cobra.io import load_model
from cobra.flux_analysis import (
production_envelope,
flux_variability_analysis,
single_gene_deletion
)
import pandas as pd
import matplotlib.pyplot as plt
# Step 1: Define production target
TARGET_METABOLITE = "EX_ac_e" # Acetate production
CARBON_SOURCE = "EX_glc__D_e" # Glucose uptake
# Step 2: Load model
model = load_model("ecoli")
print(f"Designing strain for {TARGET_METABOLITE} production")
# Step 3: Calculate baseline production envelope
print("\nCalculating production envelope...")
envelope = production_envelope(
model,
reactions=[CARBON_SOURCE, TARGET_METABOLITE],
carbon_sources=CARBON_SOURCE
)
# Visualize production envelope
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(envelope[CARBON_SOURCE], envelope["mass_yield_maximum"], 'b-', label='Max yield')
ax.plot(envelope[CARBON_SOURCE], envelope["mass_yield_minimum"], 'r-', label='Min yield')
ax.set_xlabel(f"Glucose uptake (mmol/gDW/h)")
ax.set_ylabel(f"Acetate yield")
ax.set_title("Wild-type Production Envelope")
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig("production_envelope_wildtype.png", dpi=300)
# Step 4: Maximize production while maintaining growth
print("\nOptimizing for production...")
# Set minimum growth constraint
MIN_GROWTH = 0.1 # Maintain at least 10% of max growth
with model:
# Change objective to product formation
model.objective = TARGET_METABOLITE
model.objective_direction = "max"
# Add growth constraint
growth_reaction = model.reactions.get_by_id(model.objective.name) if hasattr(model.objective, 'name') else list(model.objective.variables.keys())[0].name
max_growth = model.slim_optimize()
model.reactions.BIOMASS_Ecoli_core_w_GAM.lower_bound = MIN_GROWTH
with model:
model.objective = TARGET_METABOLITE
model.objective_direction = "max"
production_solution = model.optimize()
max_production = production_solution.objective_value
print(f"Maximum production: {max_production:.3f} mmol/gDW/h")
print(f"Growth rate: {production_solution.fluxes['BIOMASS_Ecoli_core_w_GAM']:.3f} /h")
# Step 5: Identify beneficial gene knockouts
print("\nScreening for beneficial knockouts...")
# Reset model
model.reactions.BIOMASS_Ecoli_core_w_GAM.lower_bound = MIN_GROWTH
model.objective = TARGET_METABOLITE
model.objective_direction = "max"
knockout_results = []
for gene in model.genes:
with model:
gene.knock_out()
try:
solution = model.optimize()
if solution.status == "optimal":
production = solution.objective_value
growth = solution.fluxes["BIOMASS_Ecoli_core_w_GAM"]
if production > max_production * 1.05: # >5% improvement
knockout_results.append({
"gene": gene.id,
"production": production,
"growth": growth,
"improvement": (production / max_production - 1) * 100
})
except:
continue
knockout_df = pd.DataFrame(knockout_results)
if len(knockout_df) > 0:
knockout_df = knockout_df.sort_values("improvement", ascending=False)
print(f"\nFound {len(knockout_df)} beneficial knockouts:")
print(knockout_df.head(10))
knockout_df.to_csv("beneficial_knockouts.csv", index=False)
else:
print("No beneficial single knockouts found")
# Step 6: Test combination of best knockouts
if len(knockout_df) > 0:
print("\nTesting knockout combinations...")
top_genes = knockout_df.head(3)["gene"].tolist()
with model:
for gene_id in top_genes:
model.genes.get_by_id(gene_id).knock_out()
solution = model.optimize()
if solution.status == "optimal":
combined_production = solution.objective_value
combined_growth = solution.fluxes["BIOMASS_Ecoli_core_w_GAM"]
combined_improvement = (combined_production / max_production - 1) * 100
print(f"\nCombined knockout results:")
print(f" Genes: {', '.join(top_genes)}")
print(f" Production: {combined_production:.3f} mmol/gDW/h")
print(f" Growth: {combined_growth:.3f} /h")
print(f" Improvement: {combined_improvement:.1f}%")
# Step 7: Analyze flux distribution in production strain
if len(knockout_df) > 0:
best_gene = knockout_df.iloc[0]["gene"]
with model:
model.genes.get_by_id(best_gene).knock_out()
solution = model.optimize()
# Get active pathways
active_fluxes = solution.fluxes[solution.fluxes.abs() > 0.1]
active_fluxes.to_csv(f"production_strain_fluxes_{best_gene}_knockout.csv")
print(f"\nActive reactions in production strain: {len(active_fluxes)}")
```
## Workflow 5: Model Validation and Debugging
This workflow shows systematic approaches to validate and debug metabolic models.
```python
from cobra.io import load_model, read_sbml_model
from cobra.flux_analysis import flux_variability_analysis
import pandas as pd
# Step 1: Load model
model = load_model("ecoli") # Or read_sbml_model("your_model.xml")
print(f"Model: {model.id}")
print(f"Reactions: {len(model.reactions)}")
print(f"Metabolites: {len(model.metabolites)}")
print(f"Genes: {len(model.genes)}")
# Step 2: Check model feasibility
print("\n--- Feasibility Check ---")
try:
objective_value = model.slim_optimize()
print(f"Model is feasible (objective: {objective_value:.3f})")
except:
print("Model is INFEASIBLE")
print("Troubleshooting steps:")
# Check for blocked reactions
from cobra.flux_analysis import find_blocked_reactions
blocked = find_blocked_reactions(model)
print(f" Blocked reactions: {len(blocked)}")
if len(blocked) > 0:
print(f" First 10 blocked: {list(blocked)[:10]}")
# Check medium
print(f"\n Current medium: {model.medium}")
# Try opening all exchanges
for reaction in model.exchanges:
reaction.lower_bound = -1000
try:
objective_value = model.slim_optimize()
print(f"\n Model feasible with open exchanges (objective: {objective_value:.3f})")
print(" Issue: Medium constraints too restrictive")
except:
print("\n Model still infeasible with open exchanges")
print(" Issue: Structural problem (missing reactions, mass imbalance, etc.)")
# Step 3: Check mass and charge balance
print("\n--- Mass and Charge Balance Check ---")
unbalanced_reactions = []
for reaction in model.reactions:
try:
balance = reaction.check_mass_balance()
if balance:
unbalanced_reactions.append({
"reaction": reaction.id,
"imbalance": balance
})
except:
pass
if unbalanced_reactions:
print(f"Found {len(unbalanced_reactions)} unbalanced reactions:")
for item in unbalanced_reactions[:10]:
print(f" {item['reaction']}: {item['imbalance']}")
else:
print("All reactions are mass balanced")
# Step 4: Identify dead-end metabolites
print("\n--- Dead-end Metabolite Check ---")
dead_end_metabolites = []
for metabolite in model.metabolites:
producing_reactions = [r for r in metabolite.reactions
if r.metabolites[metabolite] > 0]
consuming_reactions = [r for r in metabolite.reactions
if r.metabolites[metabolite] < 0]
if len(producing_reactions) == 0 or len(consuming_reactions) == 0:
dead_end_metabolites.append({
"metabolite": metabolite.id,
"producers": len(producing_reactions),
"consumers": len(consuming_reactions)
})
if dead_end_metabolites:
print(f"Found {len(dead_end_metabolites)} dead-end metabolites:")
for item in dead_end_metabolites[:10]:
print(f" {item['metabolite']}: {item['producers']} producers, {item['consumers']} consumers")
else:
print("No dead-end metabolites found")
# Step 5: Check for duplicate reactions
print("\n--- Duplicate Reaction Check ---")
reaction_equations = {}
duplicates = []
for reaction in model.reactions:
equation = reaction.build_reaction_string()
if equation in reaction_equations:
duplicates.append({
"reaction1": reaction_equations[equation],
"reaction2": reaction.id,
"equation": equation
})
else:
reaction_equations[equation] = reaction.id
if duplicates:
print(f"Found {len(duplicates)} duplicate reaction pairs:")
for item in duplicates[:10]:
print(f" {item['reaction1']} == {item['reaction2']}")
else:
print("No duplicate reactions found")
# Step 6: Identify orphan genes
print("\n--- Orphan Gene Check ---")
orphan_genes = [gene for gene in model.genes if len(gene.reactions) == 0]
if orphan_genes:
print(f"Found {len(orphan_genes)} orphan genes (not associated with reactions):")
print(f" First 10: {[g.id for g in orphan_genes[:10]]}")
else:
print("No orphan genes found")
# Step 7: Check for thermodynamically infeasible loops
print("\n--- Thermodynamic Loop Check ---")
fva_loopless = flux_variability_analysis(model, loopless=True)
fva_standard = flux_variability_analysis(model)
loop_reactions = []
for reaction_id in fva_standard.index:
standard_range = fva_standard.loc[reaction_id, "maximum"] - fva_standard.loc[reaction_id, "minimum"]
loopless_range = fva_loopless.loc[reaction_id, "maximum"] - fva_loopless.loc[reaction_id, "minimum"]
if standard_range > loopless_range + 0.1:
loop_reactions.append({
"reaction": reaction_id,
"standard_range": standard_range,
"loopless_range": loopless_range
})
if loop_reactions:
print(f"Found {len(loop_reactions)} reactions potentially involved in loops:")
loop_df = pd.DataFrame(loop_reactions).sort_values("standard_range", ascending=False)
print(loop_df.head(10))
else:
print("No thermodynamically infeasible loops detected")
# Step 8: Generate validation report
print("\n--- Generating Validation Report ---")
validation_report = {
"model_id": model.id,
"feasible": objective_value if 'objective_value' in locals() else None,
"n_reactions": len(model.reactions),
"n_metabolites": len(model.metabolites),
"n_genes": len(model.genes),
"n_unbalanced": len(unbalanced_reactions),
"n_dead_ends": len(dead_end_metabolites),
"n_duplicates": len(duplicates),
"n_orphan_genes": len(orphan_genes),
"n_loop_reactions": len(loop_reactions)
}
validation_df = pd.DataFrame([validation_report])
validation_df.to_csv("model_validation_report.csv", index=False)
print("Validation report saved to model_validation_report.csv")
```
These workflows provide comprehensive templates for common COBRApy tasks. Adapt them as needed for specific research questions and models.