Initial commit
This commit is contained in:
383
skills/chembl-database/SKILL.md
Normal file
383
skills/chembl-database/SKILL.md
Normal file
@@ -0,0 +1,383 @@
|
||||
---
|
||||
name: chembl-database
|
||||
description: "Query ChEMBL's bioactive molecules and drug discovery data. Search compounds by structure/properties, retrieve bioactivity data (IC50, Ki), find inhibitors, perform SAR studies, for medicinal chemistry."
|
||||
---
|
||||
|
||||
# ChEMBL Database
|
||||
|
||||
## Overview
|
||||
|
||||
ChEMBL is a manually curated database of bioactive molecules maintained by the European Bioinformatics Institute (EBI), containing over 2 million compounds, 19 million bioactivity measurements, 13,000+ drug targets, and data on approved drugs and clinical candidates. Access and query this data programmatically using the ChEMBL Python client for drug discovery and medicinal chemistry research.
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
This skill should be used when:
|
||||
|
||||
- **Compound searches**: Finding molecules by name, structure, or properties
|
||||
- **Target information**: Retrieving data about proteins, enzymes, or biological targets
|
||||
- **Bioactivity data**: Querying IC50, Ki, EC50, or other activity measurements
|
||||
- **Drug information**: Looking up approved drugs, mechanisms, or indications
|
||||
- **Structure searches**: Performing similarity or substructure searches
|
||||
- **Cheminformatics**: Analyzing molecular properties and drug-likeness
|
||||
- **Target-ligand relationships**: Exploring compound-target interactions
|
||||
- **Drug discovery**: Identifying inhibitors, agonists, or bioactive molecules
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
### Python Client
|
||||
|
||||
The ChEMBL Python client is required for programmatic access:
|
||||
|
||||
```bash
|
||||
uv pip install chembl_webresource_client
|
||||
```
|
||||
|
||||
### Basic Usage Pattern
|
||||
|
||||
```python
|
||||
from chembl_webresource_client.new_client import new_client
|
||||
|
||||
# Access different endpoints
|
||||
molecule = new_client.molecule
|
||||
target = new_client.target
|
||||
activity = new_client.activity
|
||||
drug = new_client.drug
|
||||
```
|
||||
|
||||
## Core Capabilities
|
||||
|
||||
### 1. Molecule Queries
|
||||
|
||||
**Retrieve by ChEMBL ID:**
|
||||
```python
|
||||
molecule = new_client.molecule
|
||||
aspirin = molecule.get('CHEMBL25')
|
||||
```
|
||||
|
||||
**Search by name:**
|
||||
```python
|
||||
results = molecule.filter(pref_name__icontains='aspirin')
|
||||
```
|
||||
|
||||
**Filter by properties:**
|
||||
```python
|
||||
# Find small molecules (MW <= 500) with favorable LogP
|
||||
results = molecule.filter(
|
||||
molecule_properties__mw_freebase__lte=500,
|
||||
molecule_properties__alogp__lte=5
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Target Queries
|
||||
|
||||
**Retrieve target information:**
|
||||
```python
|
||||
target = new_client.target
|
||||
egfr = target.get('CHEMBL203')
|
||||
```
|
||||
|
||||
**Search for specific target types:**
|
||||
```python
|
||||
# Find all kinase targets
|
||||
kinases = target.filter(
|
||||
target_type='SINGLE PROTEIN',
|
||||
pref_name__icontains='kinase'
|
||||
)
|
||||
```
|
||||
|
||||
### 3. Bioactivity Data
|
||||
|
||||
**Query activities for a target:**
|
||||
```python
|
||||
activity = new_client.activity
|
||||
# Find potent EGFR inhibitors
|
||||
results = activity.filter(
|
||||
target_chembl_id='CHEMBL203',
|
||||
standard_type='IC50',
|
||||
standard_value__lte=100,
|
||||
standard_units='nM'
|
||||
)
|
||||
```
|
||||
|
||||
**Get all activities for a compound:**
|
||||
```python
|
||||
compound_activities = activity.filter(
|
||||
molecule_chembl_id='CHEMBL25',
|
||||
pchembl_value__isnull=False
|
||||
)
|
||||
```
|
||||
|
||||
### 4. Structure-Based Searches
|
||||
|
||||
**Similarity search:**
|
||||
```python
|
||||
similarity = new_client.similarity
|
||||
# Find compounds similar to aspirin
|
||||
similar = similarity.filter(
|
||||
smiles='CC(=O)Oc1ccccc1C(=O)O',
|
||||
similarity=85 # 85% similarity threshold
|
||||
)
|
||||
```
|
||||
|
||||
**Substructure search:**
|
||||
```python
|
||||
substructure = new_client.substructure
|
||||
# Find compounds containing benzene ring
|
||||
results = substructure.filter(smiles='c1ccccc1')
|
||||
```
|
||||
|
||||
### 5. Drug Information
|
||||
|
||||
**Retrieve drug data:**
|
||||
```python
|
||||
drug = new_client.drug
|
||||
drug_info = drug.get('CHEMBL25')
|
||||
```
|
||||
|
||||
**Get mechanisms of action:**
|
||||
```python
|
||||
mechanism = new_client.mechanism
|
||||
mechanisms = mechanism.filter(molecule_chembl_id='CHEMBL25')
|
||||
```
|
||||
|
||||
**Query drug indications:**
|
||||
```python
|
||||
drug_indication = new_client.drug_indication
|
||||
indications = drug_indication.filter(molecule_chembl_id='CHEMBL25')
|
||||
```
|
||||
|
||||
## Query Workflow
|
||||
|
||||
### Workflow 1: Finding Inhibitors for a Target
|
||||
|
||||
1. **Identify the target** by searching by name:
|
||||
```python
|
||||
targets = new_client.target.filter(pref_name__icontains='EGFR')
|
||||
target_id = targets[0]['target_chembl_id']
|
||||
```
|
||||
|
||||
2. **Query bioactivity data** for that target:
|
||||
```python
|
||||
activities = new_client.activity.filter(
|
||||
target_chembl_id=target_id,
|
||||
standard_type='IC50',
|
||||
standard_value__lte=100
|
||||
)
|
||||
```
|
||||
|
||||
3. **Extract compound IDs** and retrieve details:
|
||||
```python
|
||||
compound_ids = [act['molecule_chembl_id'] for act in activities]
|
||||
compounds = [new_client.molecule.get(cid) for cid in compound_ids]
|
||||
```
|
||||
|
||||
### Workflow 2: Analyzing a Known Drug
|
||||
|
||||
1. **Get drug information**:
|
||||
```python
|
||||
drug_info = new_client.drug.get('CHEMBL1234')
|
||||
```
|
||||
|
||||
2. **Retrieve mechanisms**:
|
||||
```python
|
||||
mechanisms = new_client.mechanism.filter(molecule_chembl_id='CHEMBL1234')
|
||||
```
|
||||
|
||||
3. **Find all bioactivities**:
|
||||
```python
|
||||
activities = new_client.activity.filter(molecule_chembl_id='CHEMBL1234')
|
||||
```
|
||||
|
||||
### Workflow 3: Structure-Activity Relationship (SAR) Study
|
||||
|
||||
1. **Find similar compounds**:
|
||||
```python
|
||||
similar = new_client.similarity.filter(smiles='query_smiles', similarity=80)
|
||||
```
|
||||
|
||||
2. **Get activities for each compound**:
|
||||
```python
|
||||
for compound in similar:
|
||||
activities = new_client.activity.filter(
|
||||
molecule_chembl_id=compound['molecule_chembl_id']
|
||||
)
|
||||
```
|
||||
|
||||
3. **Analyze property-activity relationships** using molecular properties from results.
|
||||
|
||||
## Filter Operators
|
||||
|
||||
ChEMBL supports Django-style query filters:
|
||||
|
||||
- `__exact` - Exact match
|
||||
- `__iexact` - Case-insensitive exact match
|
||||
- `__contains` / `__icontains` - Substring matching
|
||||
- `__startswith` / `__endswith` - Prefix/suffix matching
|
||||
- `__gt`, `__gte`, `__lt`, `__lte` - Numeric comparisons
|
||||
- `__range` - Value in range
|
||||
- `__in` - Value in list
|
||||
- `__isnull` - Null/not null check
|
||||
|
||||
## Data Export and Analysis
|
||||
|
||||
Convert results to pandas DataFrame for analysis:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
activities = new_client.activity.filter(target_chembl_id='CHEMBL203')
|
||||
df = pd.DataFrame(list(activities))
|
||||
|
||||
# Analyze results
|
||||
print(df['standard_value'].describe())
|
||||
print(df.groupby('standard_type').size())
|
||||
```
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### Caching
|
||||
|
||||
The client automatically caches results for 24 hours. Configure caching:
|
||||
|
||||
```python
|
||||
from chembl_webresource_client.settings import Settings
|
||||
|
||||
# Disable caching
|
||||
Settings.Instance().CACHING = False
|
||||
|
||||
# Adjust cache expiration (seconds)
|
||||
Settings.Instance().CACHE_EXPIRE = 86400
|
||||
```
|
||||
|
||||
### Lazy Evaluation
|
||||
|
||||
Queries execute only when data is accessed. Convert to list to force execution:
|
||||
|
||||
```python
|
||||
# Query is not executed yet
|
||||
results = molecule.filter(pref_name__icontains='aspirin')
|
||||
|
||||
# Force execution
|
||||
results_list = list(results)
|
||||
```
|
||||
|
||||
### Pagination
|
||||
|
||||
Results are paginated automatically. Iterate through all results:
|
||||
|
||||
```python
|
||||
for activity in new_client.activity.filter(target_chembl_id='CHEMBL203'):
|
||||
# Process each activity
|
||||
print(activity['molecule_chembl_id'])
|
||||
```
|
||||
|
||||
## Common Use Cases
|
||||
|
||||
### Find Kinase Inhibitors
|
||||
|
||||
```python
|
||||
# Identify kinase targets
|
||||
kinases = new_client.target.filter(
|
||||
target_type='SINGLE PROTEIN',
|
||||
pref_name__icontains='kinase'
|
||||
)
|
||||
|
||||
# Get potent inhibitors
|
||||
for kinase in kinases[:5]: # First 5 kinases
|
||||
activities = new_client.activity.filter(
|
||||
target_chembl_id=kinase['target_chembl_id'],
|
||||
standard_type='IC50',
|
||||
standard_value__lte=50
|
||||
)
|
||||
```
|
||||
|
||||
### Explore Drug Repurposing
|
||||
|
||||
```python
|
||||
# Get approved drugs
|
||||
drugs = new_client.drug.filter()
|
||||
|
||||
# For each drug, find all targets
|
||||
for drug in drugs[:10]:
|
||||
mechanisms = new_client.mechanism.filter(
|
||||
molecule_chembl_id=drug['molecule_chembl_id']
|
||||
)
|
||||
```
|
||||
|
||||
### Virtual Screening
|
||||
|
||||
```python
|
||||
# Find compounds with desired properties
|
||||
candidates = new_client.molecule.filter(
|
||||
molecule_properties__mw_freebase__range=[300, 500],
|
||||
molecule_properties__alogp__lte=5,
|
||||
molecule_properties__hba__lte=10,
|
||||
molecule_properties__hbd__lte=5
|
||||
)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
### scripts/example_queries.py
|
||||
|
||||
Ready-to-use Python functions demonstrating common ChEMBL query patterns:
|
||||
|
||||
- `get_molecule_info()` - Retrieve molecule details by ID
|
||||
- `search_molecules_by_name()` - Name-based molecule search
|
||||
- `find_molecules_by_properties()` - Property-based filtering
|
||||
- `get_bioactivity_data()` - Query bioactivities for targets
|
||||
- `find_similar_compounds()` - Similarity searching
|
||||
- `substructure_search()` - Substructure matching
|
||||
- `get_drug_info()` - Retrieve drug information
|
||||
- `find_kinase_inhibitors()` - Specialized kinase inhibitor search
|
||||
- `export_to_dataframe()` - Convert results to pandas DataFrame
|
||||
|
||||
Consult this script for implementation details and usage examples.
|
||||
|
||||
### references/api_reference.md
|
||||
|
||||
Comprehensive API documentation including:
|
||||
|
||||
- Complete endpoint listing (molecule, target, activity, assay, drug, etc.)
|
||||
- All filter operators and query patterns
|
||||
- Molecular properties and bioactivity fields
|
||||
- Advanced query examples
|
||||
- Configuration and performance tuning
|
||||
- Error handling and rate limiting
|
||||
|
||||
Refer to this document when detailed API information is needed or when troubleshooting queries.
|
||||
|
||||
## Important Notes
|
||||
|
||||
### Data Reliability
|
||||
|
||||
- ChEMBL data is manually curated but may contain inconsistencies
|
||||
- Always check `data_validity_comment` field in activity records
|
||||
- Be aware of `potential_duplicate` flags
|
||||
|
||||
### Units and Standards
|
||||
|
||||
- Bioactivity values use standard units (nM, uM, etc.)
|
||||
- `pchembl_value` provides normalized activity (-log scale)
|
||||
- Check `standard_type` to understand measurement type (IC50, Ki, EC50, etc.)
|
||||
|
||||
### Rate Limiting
|
||||
|
||||
- Respect ChEMBL's fair usage policies
|
||||
- Use caching to minimize repeated requests
|
||||
- Consider bulk downloads for large datasets
|
||||
- Avoid hammering the API with rapid consecutive requests
|
||||
|
||||
### Chemical Structure Formats
|
||||
|
||||
- SMILES strings are the primary structure format
|
||||
- InChI keys available for compounds
|
||||
- SVG images can be generated via the image endpoint
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- ChEMBL website: https://www.ebi.ac.uk/chembl/
|
||||
- API documentation: https://www.ebi.ac.uk/chembl/api/data/docs
|
||||
- Python client GitHub: https://github.com/chembl/chembl_webresource_client
|
||||
- Interface documentation: https://chembl.gitbook.io/chembl-interface-documentation/
|
||||
- Example notebooks: https://github.com/chembl/notebooks
|
||||
Reference in New Issue
Block a user