Initial commit
This commit is contained in:
383
skills/chembl-database/SKILL.md
Normal file
383
skills/chembl-database/SKILL.md
Normal file
@@ -0,0 +1,383 @@
|
||||
---
|
||||
name: chembl-database
|
||||
description: "Query ChEMBL's bioactive molecules and drug discovery data. Search compounds by structure/properties, retrieve bioactivity data (IC50, Ki), find inhibitors, perform SAR studies, for medicinal chemistry."
|
||||
---
|
||||
|
||||
# ChEMBL Database
|
||||
|
||||
## Overview
|
||||
|
||||
ChEMBL is a manually curated database of bioactive molecules maintained by the European Bioinformatics Institute (EBI), containing over 2 million compounds, 19 million bioactivity measurements, 13,000+ drug targets, and data on approved drugs and clinical candidates. Access and query this data programmatically using the ChEMBL Python client for drug discovery and medicinal chemistry research.
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
This skill should be used when:
|
||||
|
||||
- **Compound searches**: Finding molecules by name, structure, or properties
|
||||
- **Target information**: Retrieving data about proteins, enzymes, or biological targets
|
||||
- **Bioactivity data**: Querying IC50, Ki, EC50, or other activity measurements
|
||||
- **Drug information**: Looking up approved drugs, mechanisms, or indications
|
||||
- **Structure searches**: Performing similarity or substructure searches
|
||||
- **Cheminformatics**: Analyzing molecular properties and drug-likeness
|
||||
- **Target-ligand relationships**: Exploring compound-target interactions
|
||||
- **Drug discovery**: Identifying inhibitors, agonists, or bioactive molecules
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
### Python Client
|
||||
|
||||
The ChEMBL Python client is required for programmatic access:
|
||||
|
||||
```bash
|
||||
uv pip install chembl_webresource_client
|
||||
```
|
||||
|
||||
### Basic Usage Pattern
|
||||
|
||||
```python
|
||||
from chembl_webresource_client.new_client import new_client
|
||||
|
||||
# Access different endpoints
|
||||
molecule = new_client.molecule
|
||||
target = new_client.target
|
||||
activity = new_client.activity
|
||||
drug = new_client.drug
|
||||
```
|
||||
|
||||
## Core Capabilities
|
||||
|
||||
### 1. Molecule Queries
|
||||
|
||||
**Retrieve by ChEMBL ID:**
|
||||
```python
|
||||
molecule = new_client.molecule
|
||||
aspirin = molecule.get('CHEMBL25')
|
||||
```
|
||||
|
||||
**Search by name:**
|
||||
```python
|
||||
results = molecule.filter(pref_name__icontains='aspirin')
|
||||
```
|
||||
|
||||
**Filter by properties:**
|
||||
```python
|
||||
# Find small molecules (MW <= 500) with favorable LogP
|
||||
results = molecule.filter(
|
||||
molecule_properties__mw_freebase__lte=500,
|
||||
molecule_properties__alogp__lte=5
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Target Queries
|
||||
|
||||
**Retrieve target information:**
|
||||
```python
|
||||
target = new_client.target
|
||||
egfr = target.get('CHEMBL203')
|
||||
```
|
||||
|
||||
**Search for specific target types:**
|
||||
```python
|
||||
# Find all kinase targets
|
||||
kinases = target.filter(
|
||||
target_type='SINGLE PROTEIN',
|
||||
pref_name__icontains='kinase'
|
||||
)
|
||||
```
|
||||
|
||||
### 3. Bioactivity Data
|
||||
|
||||
**Query activities for a target:**
|
||||
```python
|
||||
activity = new_client.activity
|
||||
# Find potent EGFR inhibitors
|
||||
results = activity.filter(
|
||||
target_chembl_id='CHEMBL203',
|
||||
standard_type='IC50',
|
||||
standard_value__lte=100,
|
||||
standard_units='nM'
|
||||
)
|
||||
```
|
||||
|
||||
**Get all activities for a compound:**
|
||||
```python
|
||||
compound_activities = activity.filter(
|
||||
molecule_chembl_id='CHEMBL25',
|
||||
pchembl_value__isnull=False
|
||||
)
|
||||
```
|
||||
|
||||
### 4. Structure-Based Searches
|
||||
|
||||
**Similarity search:**
|
||||
```python
|
||||
similarity = new_client.similarity
|
||||
# Find compounds similar to aspirin
|
||||
similar = similarity.filter(
|
||||
smiles='CC(=O)Oc1ccccc1C(=O)O',
|
||||
similarity=85 # 85% similarity threshold
|
||||
)
|
||||
```
|
||||
|
||||
**Substructure search:**
|
||||
```python
|
||||
substructure = new_client.substructure
|
||||
# Find compounds containing benzene ring
|
||||
results = substructure.filter(smiles='c1ccccc1')
|
||||
```
|
||||
|
||||
### 5. Drug Information
|
||||
|
||||
**Retrieve drug data:**
|
||||
```python
|
||||
drug = new_client.drug
|
||||
drug_info = drug.get('CHEMBL25')
|
||||
```
|
||||
|
||||
**Get mechanisms of action:**
|
||||
```python
|
||||
mechanism = new_client.mechanism
|
||||
mechanisms = mechanism.filter(molecule_chembl_id='CHEMBL25')
|
||||
```
|
||||
|
||||
**Query drug indications:**
|
||||
```python
|
||||
drug_indication = new_client.drug_indication
|
||||
indications = drug_indication.filter(molecule_chembl_id='CHEMBL25')
|
||||
```
|
||||
|
||||
## Query Workflow
|
||||
|
||||
### Workflow 1: Finding Inhibitors for a Target
|
||||
|
||||
1. **Identify the target** by searching by name:
|
||||
```python
|
||||
targets = new_client.target.filter(pref_name__icontains='EGFR')
|
||||
target_id = targets[0]['target_chembl_id']
|
||||
```
|
||||
|
||||
2. **Query bioactivity data** for that target:
|
||||
```python
|
||||
activities = new_client.activity.filter(
|
||||
target_chembl_id=target_id,
|
||||
standard_type='IC50',
|
||||
standard_value__lte=100
|
||||
)
|
||||
```
|
||||
|
||||
3. **Extract compound IDs** and retrieve details:
|
||||
```python
|
||||
compound_ids = [act['molecule_chembl_id'] for act in activities]
|
||||
compounds = [new_client.molecule.get(cid) for cid in compound_ids]
|
||||
```
|
||||
|
||||
### Workflow 2: Analyzing a Known Drug
|
||||
|
||||
1. **Get drug information**:
|
||||
```python
|
||||
drug_info = new_client.drug.get('CHEMBL1234')
|
||||
```
|
||||
|
||||
2. **Retrieve mechanisms**:
|
||||
```python
|
||||
mechanisms = new_client.mechanism.filter(molecule_chembl_id='CHEMBL1234')
|
||||
```
|
||||
|
||||
3. **Find all bioactivities**:
|
||||
```python
|
||||
activities = new_client.activity.filter(molecule_chembl_id='CHEMBL1234')
|
||||
```
|
||||
|
||||
### Workflow 3: Structure-Activity Relationship (SAR) Study
|
||||
|
||||
1. **Find similar compounds**:
|
||||
```python
|
||||
similar = new_client.similarity.filter(smiles='query_smiles', similarity=80)
|
||||
```
|
||||
|
||||
2. **Get activities for each compound**:
|
||||
```python
|
||||
for compound in similar:
|
||||
activities = new_client.activity.filter(
|
||||
molecule_chembl_id=compound['molecule_chembl_id']
|
||||
)
|
||||
```
|
||||
|
||||
3. **Analyze property-activity relationships** using molecular properties from results.
|
||||
|
||||
## Filter Operators
|
||||
|
||||
ChEMBL supports Django-style query filters:
|
||||
|
||||
- `__exact` - Exact match
|
||||
- `__iexact` - Case-insensitive exact match
|
||||
- `__contains` / `__icontains` - Substring matching
|
||||
- `__startswith` / `__endswith` - Prefix/suffix matching
|
||||
- `__gt`, `__gte`, `__lt`, `__lte` - Numeric comparisons
|
||||
- `__range` - Value in range
|
||||
- `__in` - Value in list
|
||||
- `__isnull` - Null/not null check
|
||||
|
||||
## Data Export and Analysis
|
||||
|
||||
Convert results to pandas DataFrame for analysis:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
activities = new_client.activity.filter(target_chembl_id='CHEMBL203')
|
||||
df = pd.DataFrame(list(activities))
|
||||
|
||||
# Analyze results
|
||||
print(df['standard_value'].describe())
|
||||
print(df.groupby('standard_type').size())
|
||||
```
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### Caching
|
||||
|
||||
The client automatically caches results for 24 hours. Configure caching:
|
||||
|
||||
```python
|
||||
from chembl_webresource_client.settings import Settings
|
||||
|
||||
# Disable caching
|
||||
Settings.Instance().CACHING = False
|
||||
|
||||
# Adjust cache expiration (seconds)
|
||||
Settings.Instance().CACHE_EXPIRE = 86400
|
||||
```
|
||||
|
||||
### Lazy Evaluation
|
||||
|
||||
Queries execute only when data is accessed. Convert to list to force execution:
|
||||
|
||||
```python
|
||||
# Query is not executed yet
|
||||
results = molecule.filter(pref_name__icontains='aspirin')
|
||||
|
||||
# Force execution
|
||||
results_list = list(results)
|
||||
```
|
||||
|
||||
### Pagination
|
||||
|
||||
Results are paginated automatically. Iterate through all results:
|
||||
|
||||
```python
|
||||
for activity in new_client.activity.filter(target_chembl_id='CHEMBL203'):
|
||||
# Process each activity
|
||||
print(activity['molecule_chembl_id'])
|
||||
```
|
||||
|
||||
## Common Use Cases
|
||||
|
||||
### Find Kinase Inhibitors
|
||||
|
||||
```python
|
||||
# Identify kinase targets
|
||||
kinases = new_client.target.filter(
|
||||
target_type='SINGLE PROTEIN',
|
||||
pref_name__icontains='kinase'
|
||||
)
|
||||
|
||||
# Get potent inhibitors
|
||||
for kinase in kinases[:5]: # First 5 kinases
|
||||
activities = new_client.activity.filter(
|
||||
target_chembl_id=kinase['target_chembl_id'],
|
||||
standard_type='IC50',
|
||||
standard_value__lte=50
|
||||
)
|
||||
```
|
||||
|
||||
### Explore Drug Repurposing
|
||||
|
||||
```python
|
||||
# Get approved drugs
|
||||
drugs = new_client.drug.filter()
|
||||
|
||||
# For each drug, find all targets
|
||||
for drug in drugs[:10]:
|
||||
mechanisms = new_client.mechanism.filter(
|
||||
molecule_chembl_id=drug['molecule_chembl_id']
|
||||
)
|
||||
```
|
||||
|
||||
### Virtual Screening
|
||||
|
||||
```python
|
||||
# Find compounds with desired properties
|
||||
candidates = new_client.molecule.filter(
|
||||
molecule_properties__mw_freebase__range=[300, 500],
|
||||
molecule_properties__alogp__lte=5,
|
||||
molecule_properties__hba__lte=10,
|
||||
molecule_properties__hbd__lte=5
|
||||
)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
### scripts/example_queries.py
|
||||
|
||||
Ready-to-use Python functions demonstrating common ChEMBL query patterns:
|
||||
|
||||
- `get_molecule_info()` - Retrieve molecule details by ID
|
||||
- `search_molecules_by_name()` - Name-based molecule search
|
||||
- `find_molecules_by_properties()` - Property-based filtering
|
||||
- `get_bioactivity_data()` - Query bioactivities for targets
|
||||
- `find_similar_compounds()` - Similarity searching
|
||||
- `substructure_search()` - Substructure matching
|
||||
- `get_drug_info()` - Retrieve drug information
|
||||
- `find_kinase_inhibitors()` - Specialized kinase inhibitor search
|
||||
- `export_to_dataframe()` - Convert results to pandas DataFrame
|
||||
|
||||
Consult this script for implementation details and usage examples.
|
||||
|
||||
### references/api_reference.md
|
||||
|
||||
Comprehensive API documentation including:
|
||||
|
||||
- Complete endpoint listing (molecule, target, activity, assay, drug, etc.)
|
||||
- All filter operators and query patterns
|
||||
- Molecular properties and bioactivity fields
|
||||
- Advanced query examples
|
||||
- Configuration and performance tuning
|
||||
- Error handling and rate limiting
|
||||
|
||||
Refer to this document when detailed API information is needed or when troubleshooting queries.
|
||||
|
||||
## Important Notes
|
||||
|
||||
### Data Reliability
|
||||
|
||||
- ChEMBL data is manually curated but may contain inconsistencies
|
||||
- Always check `data_validity_comment` field in activity records
|
||||
- Be aware of `potential_duplicate` flags
|
||||
|
||||
### Units and Standards
|
||||
|
||||
- Bioactivity values use standard units (nM, uM, etc.)
|
||||
- `pchembl_value` provides normalized activity (-log scale)
|
||||
- Check `standard_type` to understand measurement type (IC50, Ki, EC50, etc.)
|
||||
|
||||
### Rate Limiting
|
||||
|
||||
- Respect ChEMBL's fair usage policies
|
||||
- Use caching to minimize repeated requests
|
||||
- Consider bulk downloads for large datasets
|
||||
- Avoid hammering the API with rapid consecutive requests
|
||||
|
||||
### Chemical Structure Formats
|
||||
|
||||
- SMILES strings are the primary structure format
|
||||
- InChI keys available for compounds
|
||||
- SVG images can be generated via the image endpoint
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- ChEMBL website: https://www.ebi.ac.uk/chembl/
|
||||
- API documentation: https://www.ebi.ac.uk/chembl/api/data/docs
|
||||
- Python client GitHub: https://github.com/chembl/chembl_webresource_client
|
||||
- Interface documentation: https://chembl.gitbook.io/chembl-interface-documentation/
|
||||
- Example notebooks: https://github.com/chembl/notebooks
|
||||
272
skills/chembl-database/references/api_reference.md
Normal file
272
skills/chembl-database/references/api_reference.md
Normal file
@@ -0,0 +1,272 @@
|
||||
# ChEMBL Web Services API Reference
|
||||
|
||||
## Overview
|
||||
|
||||
ChEMBL is a manually curated database of bioactive molecules with drug-like properties maintained by the European Bioinformatics Institute (EBI). It contains information about compounds, targets, assays, bioactivity data, and approved drugs.
|
||||
|
||||
The ChEMBL database contains:
|
||||
- Over 2 million compound records
|
||||
- Over 1.4 million assay records
|
||||
- Over 19 million activity values
|
||||
- Information on 13,000+ drug targets
|
||||
- Data on 16,000+ approved drugs and clinical candidates
|
||||
|
||||
## Python Client Installation
|
||||
|
||||
```bash
|
||||
pip install chembl_webresource_client
|
||||
```
|
||||
|
||||
## Key Resources and Endpoints
|
||||
|
||||
ChEMBL provides access to 30+ specialized endpoints:
|
||||
|
||||
### Core Data Types
|
||||
|
||||
- **molecule** - Compound structures, properties, and synonyms
|
||||
- **target** - Protein and non-protein biological targets
|
||||
- **activity** - Bioassay measurement results
|
||||
- **assay** - Experimental assay details
|
||||
- **drug** - Approved pharmaceutical information
|
||||
- **mechanism** - Drug mechanism of action data
|
||||
- **document** - Literature sources and references
|
||||
- **cell_line** - Cell line information
|
||||
- **tissue** - Tissue types
|
||||
- **protein_class** - Protein classification
|
||||
- **target_component** - Target component details
|
||||
- **compound_structural_alert** - Structural alerts for toxicity
|
||||
|
||||
## Query Patterns and Filters
|
||||
|
||||
### Filter Operators
|
||||
|
||||
The API supports Django-style filter operators:
|
||||
|
||||
- `__exact` - Exact match
|
||||
- `__iexact` - Case-insensitive exact match
|
||||
- `__contains` - Contains substring
|
||||
- `__icontains` - Case-insensitive contains
|
||||
- `__startswith` - Starts with prefix
|
||||
- `__endswith` - Ends with suffix
|
||||
- `__gt` - Greater than
|
||||
- `__gte` - Greater than or equal
|
||||
- `__lt` - Less than
|
||||
- `__lte` - Less than or equal
|
||||
- `__range` - Value in range
|
||||
- `__in` - Value in list
|
||||
- `__isnull` - Is null/not null
|
||||
- `__regex` - Regular expression match
|
||||
- `__search` - Full text search
|
||||
|
||||
### Example Filter Queries
|
||||
|
||||
**Molecular weight filtering:**
|
||||
```python
|
||||
molecules.filter(molecule_properties__mw_freebase__lte=300)
|
||||
```
|
||||
|
||||
**Name pattern matching:**
|
||||
```python
|
||||
molecules.filter(pref_name__endswith='nib')
|
||||
```
|
||||
|
||||
**Multiple conditions:**
|
||||
```python
|
||||
molecules.filter(
|
||||
molecule_properties__mw_freebase__lte=300,
|
||||
pref_name__endswith='nib'
|
||||
)
|
||||
```
|
||||
|
||||
## Chemical Structure Searches
|
||||
|
||||
### Substructure Search
|
||||
Search for compounds containing a specific substructure using SMILES:
|
||||
|
||||
```python
|
||||
from chembl_webresource_client.new_client import new_client
|
||||
similarity = new_client.similarity
|
||||
results = similarity.filter(smiles='CC(=O)Oc1ccccc1C(=O)O', similarity=70)
|
||||
```
|
||||
|
||||
### Similarity Search
|
||||
Find compounds similar to a query structure:
|
||||
|
||||
```python
|
||||
similarity = new_client.similarity
|
||||
results = similarity.filter(smiles='CC(=O)Oc1ccccc1C(=O)O', similarity=85)
|
||||
```
|
||||
|
||||
## Common Data Retrieval Patterns
|
||||
|
||||
### Get Molecule by ChEMBL ID
|
||||
```python
|
||||
molecule = new_client.molecule.get('CHEMBL25')
|
||||
```
|
||||
|
||||
### Get Target Information
|
||||
```python
|
||||
target = new_client.target.get('CHEMBL240')
|
||||
```
|
||||
|
||||
### Get Activity Data
|
||||
```python
|
||||
activities = new_client.activity.filter(
|
||||
target_chembl_id='CHEMBL240',
|
||||
standard_type='IC50',
|
||||
standard_value__lte=100
|
||||
)
|
||||
```
|
||||
|
||||
### Get Drug Information
|
||||
```python
|
||||
drug = new_client.drug.get('CHEMBL1234')
|
||||
```
|
||||
|
||||
## Response Formats
|
||||
|
||||
The API supports multiple response formats:
|
||||
- JSON (default)
|
||||
- XML
|
||||
- YAML
|
||||
|
||||
## Caching and Performance
|
||||
|
||||
The Python client automatically caches results locally:
|
||||
- **Default cache duration**: 24 hours
|
||||
- **Cache location**: Local file system
|
||||
- **Lazy evaluation**: Queries execute only when data is accessed
|
||||
|
||||
### Configuration Settings
|
||||
|
||||
```python
|
||||
from chembl_webresource_client.settings import Settings
|
||||
|
||||
# Disable caching
|
||||
Settings.Instance().CACHING = False
|
||||
|
||||
# Adjust cache expiration (in seconds)
|
||||
Settings.Instance().CACHE_EXPIRE = 86400 # 24 hours
|
||||
|
||||
# Set timeout
|
||||
Settings.Instance().TIMEOUT = 30
|
||||
|
||||
# Set retries
|
||||
Settings.Instance().TOTAL_RETRIES = 3
|
||||
```
|
||||
|
||||
## Molecular Properties
|
||||
|
||||
Common molecular properties available:
|
||||
|
||||
- `mw_freebase` - Molecular weight
|
||||
- `alogp` - Calculated LogP
|
||||
- `hba` - Hydrogen bond acceptors
|
||||
- `hbd` - Hydrogen bond donors
|
||||
- `psa` - Polar surface area
|
||||
- `rtb` - Rotatable bonds
|
||||
- `ro3_pass` - Rule of 3 compliance
|
||||
- `num_ro5_violations` - Lipinski rule of 5 violations
|
||||
- `cx_most_apka` - Most acidic pKa
|
||||
- `cx_most_bpka` - Most basic pKa
|
||||
- `molecular_species` - Molecular species
|
||||
- `full_mwt` - Full molecular weight
|
||||
|
||||
## Bioactivity Data Fields
|
||||
|
||||
Key bioactivity fields:
|
||||
|
||||
- `standard_type` - Activity type (IC50, Ki, Kd, EC50, etc.)
|
||||
- `standard_value` - Numerical activity value
|
||||
- `standard_units` - Units (nM, uM, etc.)
|
||||
- `pchembl_value` - Normalized activity value (-log scale)
|
||||
- `activity_comment` - Activity annotations
|
||||
- `data_validity_comment` - Data validity flags
|
||||
- `potential_duplicate` - Duplicate flag
|
||||
|
||||
## Target Information Fields
|
||||
|
||||
Target data includes:
|
||||
|
||||
- `target_chembl_id` - ChEMBL target identifier
|
||||
- `pref_name` - Preferred target name
|
||||
- `target_type` - Type (PROTEIN, ORGANISM, etc.)
|
||||
- `organism` - Target organism
|
||||
- `tax_id` - NCBI taxonomy ID
|
||||
- `target_components` - Component details
|
||||
|
||||
## Advanced Query Examples
|
||||
|
||||
### Find Kinase Inhibitors
|
||||
```python
|
||||
# Get kinase targets
|
||||
targets = new_client.target.filter(
|
||||
target_type='SINGLE PROTEIN',
|
||||
pref_name__icontains='kinase'
|
||||
)
|
||||
|
||||
# Get activities for these targets
|
||||
activities = new_client.activity.filter(
|
||||
target_chembl_id__in=[t['target_chembl_id'] for t in targets],
|
||||
standard_type='IC50',
|
||||
standard_value__lte=100
|
||||
)
|
||||
```
|
||||
|
||||
### Retrieve Drug Mechanisms
|
||||
```python
|
||||
mechanisms = new_client.mechanism.filter(
|
||||
molecule_chembl_id='CHEMBL25'
|
||||
)
|
||||
```
|
||||
|
||||
### Get Compound Bioactivities
|
||||
```python
|
||||
activities = new_client.activity.filter(
|
||||
molecule_chembl_id='CHEMBL25',
|
||||
pchembl_value__isnull=False
|
||||
)
|
||||
```
|
||||
|
||||
## Image Generation
|
||||
|
||||
ChEMBL can generate SVG images of molecular structures:
|
||||
|
||||
```python
|
||||
from chembl_webresource_client.new_client import new_client
|
||||
image = new_client.image
|
||||
svg = image.get('CHEMBL25')
|
||||
```
|
||||
|
||||
## Pagination
|
||||
|
||||
Results are paginated automatically. To iterate through all results:
|
||||
|
||||
```python
|
||||
activities = new_client.activity.filter(target_chembl_id='CHEMBL240')
|
||||
for activity in activities:
|
||||
print(activity)
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
Common errors:
|
||||
- **404**: Resource not found
|
||||
- **503**: Service temporarily unavailable
|
||||
- **Timeout**: Request took too long
|
||||
|
||||
The client automatically retries failed requests based on `TOTAL_RETRIES` setting.
|
||||
|
||||
## Rate Limiting
|
||||
|
||||
ChEMBL has fair usage policies:
|
||||
- Be respectful with query frequency
|
||||
- Use caching to minimize repeated requests
|
||||
- Consider bulk downloads for large datasets
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- Official API documentation: https://www.ebi.ac.uk/chembl/api/data/docs
|
||||
- Python client GitHub: https://github.com/chembl/chembl_webresource_client
|
||||
- ChEMBL interface docs: https://chembl.gitbook.io/chembl-interface-documentation/
|
||||
- Example notebooks: https://github.com/chembl/notebooks
|
||||
278
skills/chembl-database/scripts/example_queries.py
Normal file
278
skills/chembl-database/scripts/example_queries.py
Normal file
@@ -0,0 +1,278 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
ChEMBL Database Query Examples
|
||||
|
||||
This script demonstrates common query patterns for the ChEMBL database
|
||||
using the chembl_webresource_client Python library.
|
||||
|
||||
Requirements:
|
||||
pip install chembl_webresource_client
|
||||
pip install pandas (optional, for data manipulation)
|
||||
"""
|
||||
|
||||
from chembl_webresource_client.new_client import new_client
|
||||
|
||||
|
||||
def get_molecule_info(chembl_id):
|
||||
"""
|
||||
Retrieve detailed information about a molecule by ChEMBL ID.
|
||||
|
||||
Args:
|
||||
chembl_id: ChEMBL identifier (e.g., 'CHEMBL25')
|
||||
|
||||
Returns:
|
||||
Dictionary containing molecule information
|
||||
"""
|
||||
molecule = new_client.molecule
|
||||
return molecule.get(chembl_id)
|
||||
|
||||
|
||||
def search_molecules_by_name(name_pattern):
|
||||
"""
|
||||
Search for molecules by name pattern.
|
||||
|
||||
Args:
|
||||
name_pattern: Name or pattern to search for
|
||||
|
||||
Returns:
|
||||
List of matching molecules
|
||||
"""
|
||||
molecule = new_client.molecule
|
||||
results = molecule.filter(pref_name__icontains=name_pattern)
|
||||
return list(results)
|
||||
|
||||
|
||||
def find_molecules_by_properties(max_mw=500, min_logp=None, max_logp=None):
|
||||
"""
|
||||
Find molecules based on physicochemical properties.
|
||||
|
||||
Args:
|
||||
max_mw: Maximum molecular weight
|
||||
min_logp: Minimum LogP value
|
||||
max_logp: Maximum LogP value
|
||||
|
||||
Returns:
|
||||
List of matching molecules
|
||||
"""
|
||||
molecule = new_client.molecule
|
||||
|
||||
filters = {
|
||||
'molecule_properties__mw_freebase__lte': max_mw
|
||||
}
|
||||
|
||||
if min_logp is not None:
|
||||
filters['molecule_properties__alogp__gte'] = min_logp
|
||||
if max_logp is not None:
|
||||
filters['molecule_properties__alogp__lte'] = max_logp
|
||||
|
||||
results = molecule.filter(**filters)
|
||||
return list(results)
|
||||
|
||||
|
||||
def get_target_info(target_chembl_id):
|
||||
"""
|
||||
Retrieve information about a biological target.
|
||||
|
||||
Args:
|
||||
target_chembl_id: ChEMBL target identifier (e.g., 'CHEMBL240')
|
||||
|
||||
Returns:
|
||||
Dictionary containing target information
|
||||
"""
|
||||
target = new_client.target
|
||||
return target.get(target_chembl_id)
|
||||
|
||||
|
||||
def search_targets_by_name(target_name):
|
||||
"""
|
||||
Search for targets by name or keyword.
|
||||
|
||||
Args:
|
||||
target_name: Target name or keyword (e.g., 'kinase', 'EGFR')
|
||||
|
||||
Returns:
|
||||
List of matching targets
|
||||
"""
|
||||
target = new_client.target
|
||||
results = target.filter(
|
||||
target_type='SINGLE PROTEIN',
|
||||
pref_name__icontains=target_name
|
||||
)
|
||||
return list(results)
|
||||
|
||||
|
||||
def get_bioactivity_data(target_chembl_id, activity_type='IC50', max_value=100):
|
||||
"""
|
||||
Retrieve bioactivity data for a specific target.
|
||||
|
||||
Args:
|
||||
target_chembl_id: ChEMBL target identifier
|
||||
activity_type: Type of activity (IC50, Ki, EC50, etc.)
|
||||
max_value: Maximum activity value in nM
|
||||
|
||||
Returns:
|
||||
List of activity records
|
||||
"""
|
||||
activity = new_client.activity
|
||||
results = activity.filter(
|
||||
target_chembl_id=target_chembl_id,
|
||||
standard_type=activity_type,
|
||||
standard_value__lte=max_value,
|
||||
standard_units='nM'
|
||||
)
|
||||
return list(results)
|
||||
|
||||
|
||||
def find_similar_compounds(smiles, similarity_threshold=85):
|
||||
"""
|
||||
Find compounds similar to a query structure.
|
||||
|
||||
Args:
|
||||
smiles: SMILES string of query molecule
|
||||
similarity_threshold: Minimum similarity percentage (0-100)
|
||||
|
||||
Returns:
|
||||
List of similar compounds
|
||||
"""
|
||||
similarity = new_client.similarity
|
||||
results = similarity.filter(
|
||||
smiles=smiles,
|
||||
similarity=similarity_threshold
|
||||
)
|
||||
return list(results)
|
||||
|
||||
|
||||
def substructure_search(smiles):
|
||||
"""
|
||||
Search for compounds containing a specific substructure.
|
||||
|
||||
Args:
|
||||
smiles: SMILES string of substructure
|
||||
|
||||
Returns:
|
||||
List of compounds containing the substructure
|
||||
"""
|
||||
substructure = new_client.substructure
|
||||
results = substructure.filter(smiles=smiles)
|
||||
return list(results)
|
||||
|
||||
|
||||
def get_drug_info(molecule_chembl_id):
|
||||
"""
|
||||
Retrieve drug information including indications and mechanisms.
|
||||
|
||||
Args:
|
||||
molecule_chembl_id: ChEMBL molecule identifier
|
||||
|
||||
Returns:
|
||||
Tuple of (drug_info, mechanisms, indications)
|
||||
"""
|
||||
drug = new_client.drug
|
||||
mechanism = new_client.mechanism
|
||||
drug_indication = new_client.drug_indication
|
||||
|
||||
try:
|
||||
drug_info = drug.get(molecule_chembl_id)
|
||||
except:
|
||||
drug_info = None
|
||||
|
||||
mechanisms = list(mechanism.filter(molecule_chembl_id=molecule_chembl_id))
|
||||
indications = list(drug_indication.filter(molecule_chembl_id=molecule_chembl_id))
|
||||
|
||||
return drug_info, mechanisms, indications
|
||||
|
||||
|
||||
def find_kinase_inhibitors(max_ic50=100):
|
||||
"""
|
||||
Find potent kinase inhibitors.
|
||||
|
||||
Args:
|
||||
max_ic50: Maximum IC50 value in nM
|
||||
|
||||
Returns:
|
||||
List of kinase inhibitor activities
|
||||
"""
|
||||
target = new_client.target
|
||||
activity = new_client.activity
|
||||
|
||||
# Find kinase targets
|
||||
kinase_targets = target.filter(
|
||||
target_type='SINGLE PROTEIN',
|
||||
pref_name__icontains='kinase'
|
||||
)
|
||||
|
||||
# Get target IDs
|
||||
target_ids = [t['target_chembl_id'] for t in kinase_targets[:10]] # Limit to first 10
|
||||
|
||||
# Find activities
|
||||
results = activity.filter(
|
||||
target_chembl_id__in=target_ids,
|
||||
standard_type='IC50',
|
||||
standard_value__lte=max_ic50,
|
||||
standard_units='nM'
|
||||
)
|
||||
|
||||
return list(results)
|
||||
|
||||
|
||||
def get_compound_bioactivities(molecule_chembl_id):
|
||||
"""
|
||||
Get all bioactivity data for a specific compound.
|
||||
|
||||
Args:
|
||||
molecule_chembl_id: ChEMBL molecule identifier
|
||||
|
||||
Returns:
|
||||
List of all activity records for the compound
|
||||
"""
|
||||
activity = new_client.activity
|
||||
results = activity.filter(
|
||||
molecule_chembl_id=molecule_chembl_id,
|
||||
pchembl_value__isnull=False
|
||||
)
|
||||
return list(results)
|
||||
|
||||
|
||||
def export_to_dataframe(data):
|
||||
"""
|
||||
Convert ChEMBL data to pandas DataFrame (requires pandas).
|
||||
|
||||
Args:
|
||||
data: List of ChEMBL records
|
||||
|
||||
Returns:
|
||||
pandas DataFrame
|
||||
"""
|
||||
try:
|
||||
import pandas as pd
|
||||
return pd.DataFrame(data)
|
||||
except ImportError:
|
||||
print("pandas not installed. Install with: pip install pandas")
|
||||
return None
|
||||
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
print("ChEMBL Database Query Examples")
|
||||
print("=" * 50)
|
||||
|
||||
# Example 1: Get information about aspirin
|
||||
print("\n1. Getting information about aspirin (CHEMBL25)...")
|
||||
aspirin = get_molecule_info('CHEMBL25')
|
||||
print(f"Name: {aspirin.get('pref_name')}")
|
||||
print(f"Formula: {aspirin.get('molecule_properties', {}).get('full_molformula')}")
|
||||
|
||||
# Example 2: Search for EGFR inhibitors
|
||||
print("\n2. Searching for EGFR targets...")
|
||||
egfr_targets = search_targets_by_name('EGFR')
|
||||
if egfr_targets:
|
||||
print(f"Found {len(egfr_targets)} EGFR-related targets")
|
||||
print(f"First target: {egfr_targets[0]['pref_name']}")
|
||||
|
||||
# Example 3: Find potent activities for a target
|
||||
print("\n3. Finding potent compounds for EGFR (CHEMBL203)...")
|
||||
activities = get_bioactivity_data('CHEMBL203', 'IC50', max_value=10)
|
||||
print(f"Found {len(activities)} compounds with IC50 <= 10 nM")
|
||||
|
||||
print("\n" + "=" * 50)
|
||||
print("Examples completed successfully!")
|
||||
Reference in New Issue
Block a user