Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,505 @@
---
name: cellxgene-census
description: "Query CZ CELLxGENE Census (61M+ cells). Filter by cell type/tissue/disease, retrieve expression data, integrate with scanpy/PyTorch, for population-scale single-cell analysis."
---
# CZ CELLxGENE Census
## Overview
The CZ CELLxGENE Census provides programmatic access to a comprehensive, versioned collection of standardized single-cell genomics data from CZ CELLxGENE Discover. This skill enables efficient querying and analysis of millions of cells across thousands of datasets.
The Census includes:
- **61+ million cells** from human and mouse
- **Standardized metadata** (cell types, tissues, diseases, donors)
- **Raw gene expression** matrices
- **Pre-calculated embeddings** and statistics
- **Integration with PyTorch, scanpy, and other analysis tools**
## When to Use This Skill
This skill should be used when:
- Querying single-cell expression data by cell type, tissue, or disease
- Exploring available single-cell datasets and metadata
- Training machine learning models on single-cell data
- Performing large-scale cross-dataset analyses
- Integrating Census data with scanpy or other analysis frameworks
- Computing statistics across millions of cells
- Accessing pre-calculated embeddings or model predictions
## Installation and Setup
Install the Census API:
```bash
uv pip install cellxgene-census
```
For machine learning workflows, install additional dependencies:
```bash
uv pip install cellxgene-census[experimental]
```
## Core Workflow Patterns
### 1. Opening the Census
Always use the context manager to ensure proper resource cleanup:
```python
import cellxgene_census
# Open latest stable version
with cellxgene_census.open_soma() as census:
# Work with census data
# Open specific version for reproducibility
with cellxgene_census.open_soma(census_version="2023-07-25") as census:
# Work with census data
```
**Key points:**
- Use context manager (`with` statement) for automatic cleanup
- Specify `census_version` for reproducible analyses
- Default opens latest "stable" release
### 2. Exploring Census Information
Before querying expression data, explore available datasets and metadata.
**Access summary information:**
```python
# Get summary statistics
summary = census["census_info"]["summary"].read().concat().to_pandas()
print(f"Total cells: {summary['total_cell_count'][0]}")
# Get all datasets
datasets = census["census_info"]["datasets"].read().concat().to_pandas()
# Filter datasets by criteria
covid_datasets = datasets[datasets["disease"].str.contains("COVID", na=False)]
```
**Query cell metadata to understand available data:**
```python
# Get unique cell types in a tissue
cell_metadata = cellxgene_census.get_obs(
census,
"homo_sapiens",
value_filter="tissue_general == 'brain' and is_primary_data == True",
column_names=["cell_type"]
)
unique_cell_types = cell_metadata["cell_type"].unique()
print(f"Found {len(unique_cell_types)} cell types in brain")
# Count cells by tissue
tissue_counts = cell_metadata.groupby("tissue_general").size()
```
**Important:** Always filter for `is_primary_data == True` to avoid counting duplicate cells unless specifically analyzing duplicates.
### 3. Querying Expression Data (Small to Medium Scale)
For queries returning < 100k cells that fit in memory, use `get_anndata()`:
```python
# Basic query with cell type and tissue filters
adata = cellxgene_census.get_anndata(
census=census,
organism="Homo sapiens", # or "Mus musculus"
obs_value_filter="cell_type == 'B cell' and tissue_general == 'lung' and is_primary_data == True",
obs_column_names=["assay", "disease", "sex", "donor_id"],
)
# Query specific genes with multiple filters
adata = cellxgene_census.get_anndata(
census=census,
organism="Homo sapiens",
var_value_filter="feature_name in ['CD4', 'CD8A', 'CD19', 'FOXP3']",
obs_value_filter="cell_type == 'T cell' and disease == 'COVID-19' and is_primary_data == True",
obs_column_names=["cell_type", "tissue_general", "donor_id"],
)
```
**Filter syntax:**
- Use `obs_value_filter` for cell filtering
- Use `var_value_filter` for gene filtering
- Combine conditions with `and`, `or`
- Use `in` for multiple values: `tissue in ['lung', 'liver']`
- Select only needed columns with `obs_column_names`
**Getting metadata separately:**
```python
# Query cell metadata
cell_metadata = cellxgene_census.get_obs(
census, "homo_sapiens",
value_filter="disease == 'COVID-19' and is_primary_data == True",
column_names=["cell_type", "tissue_general", "donor_id"]
)
# Query gene metadata
gene_metadata = cellxgene_census.get_var(
census, "homo_sapiens",
value_filter="feature_name in ['CD4', 'CD8A']",
column_names=["feature_id", "feature_name", "feature_length"]
)
```
### 4. Large-Scale Queries (Out-of-Core Processing)
For queries exceeding available RAM, use `axis_query()` with iterative processing:
```python
import tiledbsoma as soma
# Create axis query
query = census["census_data"]["homo_sapiens"].axis_query(
measurement_name="RNA",
obs_query=soma.AxisQuery(
value_filter="tissue_general == 'brain' and is_primary_data == True"
),
var_query=soma.AxisQuery(
value_filter="feature_name in ['FOXP2', 'TBR1', 'SATB2']"
)
)
# Iterate through expression matrix in chunks
iterator = query.X("raw").tables()
for batch in iterator:
# batch is a pyarrow.Table with columns:
# - soma_data: expression value
# - soma_dim_0: cell (obs) coordinate
# - soma_dim_1: gene (var) coordinate
process_batch(batch)
```
**Computing incremental statistics:**
```python
# Example: Calculate mean expression
n_observations = 0
sum_values = 0.0
iterator = query.X("raw").tables()
for batch in iterator:
values = batch["soma_data"].to_numpy()
n_observations += len(values)
sum_values += values.sum()
mean_expression = sum_values / n_observations
```
### 5. Machine Learning with PyTorch
For training models, use the experimental PyTorch integration:
```python
from cellxgene_census.experimental.ml import experiment_dataloader
with cellxgene_census.open_soma() as census:
# Create dataloader
dataloader = experiment_dataloader(
census["census_data"]["homo_sapiens"],
measurement_name="RNA",
X_name="raw",
obs_value_filter="tissue_general == 'liver' and is_primary_data == True",
obs_column_names=["cell_type"],
batch_size=128,
shuffle=True,
)
# Training loop
for epoch in range(num_epochs):
for batch in dataloader:
X = batch["X"] # Gene expression tensor
labels = batch["obs"]["cell_type"] # Cell type labels
# Forward pass
outputs = model(X)
loss = criterion(outputs, labels)
# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
**Train/test splitting:**
```python
from cellxgene_census.experimental.ml import ExperimentDataset
# Create dataset from experiment
dataset = ExperimentDataset(
experiment_axis_query,
layer_name="raw",
obs_column_names=["cell_type"],
batch_size=128,
)
# Split into train and test
train_dataset, test_dataset = dataset.random_split(
split=[0.8, 0.2],
seed=42
)
```
### 6. Integration with Scanpy
Seamlessly integrate Census data with scanpy workflows:
```python
import scanpy as sc
# Load data from Census
adata = cellxgene_census.get_anndata(
census=census,
organism="Homo sapiens",
obs_value_filter="cell_type == 'neuron' and tissue_general == 'cortex' and is_primary_data == True",
)
# Standard scanpy workflow
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
# Dimensionality reduction
sc.pp.pca(adata, n_comps=50)
sc.pp.neighbors(adata)
sc.tl.umap(adata)
# Visualization
sc.pl.umap(adata, color=["cell_type", "tissue", "disease"])
```
### 7. Multi-Dataset Integration
Query and integrate multiple datasets:
```python
# Strategy 1: Query multiple tissues separately
tissues = ["lung", "liver", "kidney"]
adatas = []
for tissue in tissues:
adata = cellxgene_census.get_anndata(
census=census,
organism="Homo sapiens",
obs_value_filter=f"tissue_general == '{tissue}' and is_primary_data == True",
)
adata.obs["tissue"] = tissue
adatas.append(adata)
# Concatenate
combined = adatas[0].concatenate(adatas[1:])
# Strategy 2: Query multiple datasets directly
adata = cellxgene_census.get_anndata(
census=census,
organism="Homo sapiens",
obs_value_filter="tissue_general in ['lung', 'liver', 'kidney'] and is_primary_data == True",
)
```
## Key Concepts and Best Practices
### Always Filter for Primary Data
Unless analyzing duplicates, always include `is_primary_data == True` in queries to avoid counting cells multiple times:
```python
obs_value_filter="cell_type == 'B cell' and is_primary_data == True"
```
### Specify Census Version for Reproducibility
Always specify the Census version in production analyses:
```python
census = cellxgene_census.open_soma(census_version="2023-07-25")
```
### Estimate Query Size Before Loading
For large queries, first check the number of cells to avoid memory issues:
```python
# Get cell count
metadata = cellxgene_census.get_obs(
census, "homo_sapiens",
value_filter="tissue_general == 'brain' and is_primary_data == True",
column_names=["soma_joinid"]
)
n_cells = len(metadata)
print(f"Query will return {n_cells:,} cells")
# If too large (>100k), use out-of-core processing
```
### Use tissue_general for Broader Groupings
The `tissue_general` field provides coarser categories than `tissue`, useful for cross-tissue analyses:
```python
# Broader grouping
obs_value_filter="tissue_general == 'immune system'"
# Specific tissue
obs_value_filter="tissue == 'peripheral blood mononuclear cell'"
```
### Select Only Needed Columns
Minimize data transfer by specifying only required metadata columns:
```python
obs_column_names=["cell_type", "tissue_general", "disease"] # Not all columns
```
### Check Dataset Presence for Gene-Specific Queries
When analyzing specific genes, verify which datasets measured them:
```python
presence = cellxgene_census.get_presence_matrix(
census,
"homo_sapiens",
var_value_filter="feature_name in ['CD4', 'CD8A']"
)
```
### Two-Step Workflow: Explore Then Query
First explore metadata to understand available data, then query expression:
```python
# Step 1: Explore what's available
metadata = cellxgene_census.get_obs(
census, "homo_sapiens",
value_filter="disease == 'COVID-19' and is_primary_data == True",
column_names=["cell_type", "tissue_general"]
)
print(metadata.value_counts())
# Step 2: Query based on findings
adata = cellxgene_census.get_anndata(
census=census,
organism="Homo sapiens",
obs_value_filter="disease == 'COVID-19' and cell_type == 'T cell' and is_primary_data == True",
)
```
## Available Metadata Fields
### Cell Metadata (obs)
Key fields for filtering:
- `cell_type`, `cell_type_ontology_term_id`
- `tissue`, `tissue_general`, `tissue_ontology_term_id`
- `disease`, `disease_ontology_term_id`
- `assay`, `assay_ontology_term_id`
- `donor_id`, `sex`, `self_reported_ethnicity`
- `development_stage`, `development_stage_ontology_term_id`
- `dataset_id`
- `is_primary_data` (Boolean: True = unique cell)
### Gene Metadata (var)
- `feature_id` (Ensembl gene ID, e.g., "ENSG00000161798")
- `feature_name` (Gene symbol, e.g., "FOXP2")
- `feature_length` (Gene length in base pairs)
## Reference Documentation
This skill includes detailed reference documentation:
### references/census_schema.md
Comprehensive documentation of:
- Census data structure and organization
- All available metadata fields
- Value filter syntax and operators
- SOMA object types
- Data inclusion criteria
**When to read:** When you need detailed schema information, full list of metadata fields, or complex filter syntax.
### references/common_patterns.md
Examples and patterns for:
- Exploratory queries (metadata only)
- Small-to-medium queries (AnnData)
- Large queries (out-of-core processing)
- PyTorch integration
- Scanpy integration workflows
- Multi-dataset integration
- Best practices and common pitfalls
**When to read:** When implementing specific query patterns, looking for code examples, or troubleshooting common issues.
## Common Use Cases
### Use Case 1: Explore Cell Types in a Tissue
```python
with cellxgene_census.open_soma() as census:
cells = cellxgene_census.get_obs(
census, "homo_sapiens",
value_filter="tissue_general == 'lung' and is_primary_data == True",
column_names=["cell_type"]
)
print(cells["cell_type"].value_counts())
```
### Use Case 2: Query Marker Gene Expression
```python
with cellxgene_census.open_soma() as census:
adata = cellxgene_census.get_anndata(
census=census,
organism="Homo sapiens",
var_value_filter="feature_name in ['CD4', 'CD8A', 'CD19']",
obs_value_filter="cell_type in ['T cell', 'B cell'] and is_primary_data == True",
)
```
### Use Case 3: Train Cell Type Classifier
```python
from cellxgene_census.experimental.ml import experiment_dataloader
with cellxgene_census.open_soma() as census:
dataloader = experiment_dataloader(
census["census_data"]["homo_sapiens"],
measurement_name="RNA",
X_name="raw",
obs_value_filter="is_primary_data == True",
obs_column_names=["cell_type"],
batch_size=128,
shuffle=True,
)
# Train model
for epoch in range(epochs):
for batch in dataloader:
# Training logic
pass
```
### Use Case 4: Cross-Tissue Analysis
```python
with cellxgene_census.open_soma() as census:
adata = cellxgene_census.get_anndata(
census=census,
organism="Homo sapiens",
obs_value_filter="cell_type == 'macrophage' and tissue_general in ['lung', 'liver', 'brain'] and is_primary_data == True",
)
# Analyze macrophage differences across tissues
sc.tl.rank_genes_groups(adata, groupby="tissue_general")
```
## Troubleshooting
### Query Returns Too Many Cells
- Add more specific filters to reduce scope
- Use `tissue` instead of `tissue_general` for finer granularity
- Filter by specific `dataset_id` if known
- Switch to out-of-core processing for large queries
### Memory Errors
- Reduce query scope with more restrictive filters
- Select fewer genes with `var_value_filter`
- Use out-of-core processing with `axis_query()`
- Process data in batches
### Duplicate Cells in Results
- Always include `is_primary_data == True` in filters
- Check if intentionally querying across multiple datasets
### Gene Not Found
- Verify gene name spelling (case-sensitive)
- Try Ensembl ID with `feature_id` instead of `feature_name`
- Check dataset presence matrix to see if gene was measured
- Some genes may have been filtered during Census construction
### Version Inconsistencies
- Always specify `census_version` explicitly
- Use same version across all analyses
- Check release notes for version-specific changes