Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,636 @@
# BioServices: Complete Services Reference
This document provides a comprehensive reference for all major services available in BioServices, including key methods, parameters, and use cases.
## Protein & Gene Resources
### UniProt
Protein sequence and functional information database.
**Initialization:**
```python
from bioservices import UniProt
u = UniProt(verbose=False)
```
**Key Methods:**
- `search(query, frmt="tab", columns=None, limit=None, sort=None, compress=False, include=False, **kwargs)`
- Search UniProt with flexible query syntax
- `frmt`: "tab", "fasta", "xml", "rdf", "gff", "txt"
- `columns`: Comma-separated list (e.g., "id,genes,organism,length")
- Returns: String in requested format
- `retrieve(uniprot_id, frmt="txt")`
- Retrieve specific UniProt entry
- `frmt`: "txt", "fasta", "xml", "rdf", "gff"
- Returns: Entry data in requested format
- `mapping(fr="UniProtKB_AC-ID", to="KEGG", query="P43403")`
- Convert identifiers between databases
- `fr`/`to`: Database identifiers (see identifier_mapping.md)
- `query`: Single ID or comma-separated list
- Returns: Dictionary mapping input to output IDs
- `searchUniProtId(pattern, columns="entry name,length,organism", limit=100)`
- Convenience method for ID-based searches
- Returns: Tab-separated values
**Common columns:** id, entry name, genes, organism, protein names, length, sequence, go-id, ec, pathway, interactor
**Use cases:**
- Protein sequence retrieval for BLAST
- Functional annotation lookup
- Cross-database identifier mapping
- Batch protein information retrieval
---
### KEGG (Kyoto Encyclopedia of Genes and Genomes)
Metabolic pathways, genes, and organisms database.
**Initialization:**
```python
from bioservices import KEGG
k = KEGG()
k.organism = "hsa" # Set default organism
```
**Key Methods:**
- `list(database)`
- List entries in KEGG database
- `database`: "organism", "pathway", "module", "disease", "drug", "compound"
- Returns: Multi-line string with entries
- `find(database, query)`
- Search database by keywords
- Returns: List of matching entries with IDs
- `get(entry_id)`
- Retrieve entry by ID
- Supports genes, pathways, compounds, etc.
- Returns: Raw entry text
- `parse(data)`
- Parse KEGG entry into dictionary
- Returns: Dict with structured data
- `lookfor_organism(name)`
- Search organisms by name pattern
- Returns: List of matching organism codes
- `lookfor_pathway(name)`
- Search pathways by name
- Returns: List of pathway IDs
- `get_pathway_by_gene(gene_id, organism)`
- Find pathways containing gene
- Returns: List of pathway IDs
- `parse_kgml_pathway(pathway_id)`
- Parse pathway KGML for interactions
- Returns: Dict with "entries" and "relations"
- `pathway2sif(pathway_id)`
- Extract Simple Interaction Format data
- Filters for activation/inhibition
- Returns: List of interaction tuples
**Organism codes:**
- hsa: Homo sapiens
- mmu: Mus musculus
- dme: Drosophila melanogaster
- sce: Saccharomyces cerevisiae
- eco: Escherichia coli
**Use cases:**
- Pathway analysis and visualization
- Gene function annotation
- Metabolic network reconstruction
- Protein-protein interaction extraction
---
### HGNC (Human Gene Nomenclature Committee)
Official human gene naming authority.
**Initialization:**
```python
from bioservices import HGNC
h = HGNC()
```
**Key Methods:**
- `search(query)`: Search gene symbols/names
- `fetch(format, query)`: Retrieve gene information
**Use cases:**
- Standardizing human gene names
- Looking up official gene symbols
---
### MyGeneInfo
Gene annotation and query service.
**Initialization:**
```python
from bioservices import MyGeneInfo
m = MyGeneInfo()
```
**Key Methods:**
- `querymany(ids, scopes, fields, species)`: Batch gene queries
- `getgene(geneid)`: Get gene annotation
**Use cases:**
- Batch gene annotation retrieval
- Gene ID conversion
---
## Chemical Compound Resources
### ChEBI (Chemical Entities of Biological Interest)
Dictionary of molecular entities.
**Initialization:**
```python
from bioservices import ChEBI
c = ChEBI()
```
**Key Methods:**
- `getCompleteEntity(chebi_id)`: Full compound information
- `getLiteEntity(chebi_id)`: Basic information
- `getCompleteEntityByList(chebi_ids)`: Batch retrieval
**Use cases:**
- Small molecule information
- Chemical structure data
- Compound property lookup
---
### ChEMBL
Bioactive drug-like compound database.
**Initialization:**
```python
from bioservices import ChEMBL
c = ChEMBL()
```
**Key Methods:**
- `get_molecule_form(chembl_id)`: Compound details
- `get_target(chembl_id)`: Target information
- `get_similarity(chembl_id)`: Get similar compounds for given
- `get_assays()`: Bioassay data
**Use cases:**
- Drug discovery data
- Find similar compounds
- Bioactivity information
- Target-compound relationships
---
### UniChem
Chemical identifier mapping service.
**Initialization:**
```python
from bioservices import UniChem
u = UniChem()
```
**Key Methods:**
- `get_compound_id_from_kegg(kegg_id)`: KEGG → ChEMBL
- `get_all_compound_ids(src_compound_id, src_id)`: Get all IDs
- `get_src_compound_ids(src_compound_id, from_src_id, to_src_id)`: Convert IDs
**Source IDs:**
- 1: ChEMBL
- 2: DrugBank
- 3: PDB
- 6: KEGG
- 7: ChEBI
- 22: PubChem
**Use cases:**
- Cross-database compound ID mapping
- Linking chemical databases
---
### PubChem
Chemical compound database from NIH.
**Initialization:**
```python
from bioservices import PubChem
p = PubChem()
```
**Key Methods:**
- `get_compounds(identifier, namespace)`: Retrieve compounds
- `get_properties(properties, identifier, namespace)`: Get properties
**Use cases:**
- Chemical structure retrieval
- Compound property information
---
## Sequence Analysis Tools
### NCBIblast
Sequence similarity searching.
**Initialization:**
```python
from bioservices import NCBIblast
s = NCBIblast(verbose=False)
```
**Key Methods:**
- `run(program, sequence, stype, database, email, **params)`
- Submit BLAST job
- `program`: "blastp", "blastn", "blastx", "tblastn", "tblastx"
- `stype`: "protein" or "dna"
- `database`: "uniprotkb", "pdb", "refseq_protein", etc.
- `email`: Required by NCBI
- Returns: Job ID
- `getStatus(jobid)`
- Check job status
- Returns: "RUNNING", "FINISHED", "ERROR"
- `getResult(jobid, result_type)`
- Retrieve results
- `result_type`: "out" (default), "ids", "xml"
**Important:** BLAST jobs are asynchronous. Always check status before retrieving results.
**Use cases:**
- Protein homology searches
- Sequence similarity analysis
- Functional annotation by homology
---
## Pathway & Interaction Resources
### Reactome
Pathway database.
**Initialization:**
```python
from bioservices import Reactome
r = Reactome()
```
**Key Methods:**
- `get_pathway_by_id(pathway_id)`: Pathway details
- `search_pathway(query)`: Search pathways
**Use cases:**
- Human pathway analysis
- Biological process annotation
---
### PSICQUIC
Protein interaction query service (federates 30+ databases).
**Initialization:**
```python
from bioservices import PSICQUIC
s = PSICQUIC()
```
**Key Methods:**
- `query(database, query_string)`
- Query specific interaction database
- Returns: PSI-MI TAB format
- `activeDBs`
- Property listing available databases
- Returns: List of database names
**Available databases:** MINT, IntAct, BioGRID, DIP, InnateDB, MatrixDB, MPIDB, UniProt, and 30+ more
**Query syntax:** Supports AND, OR, species filters
- Example: "ZAP70 AND species:9606"
**Use cases:**
- Protein-protein interaction discovery
- Network analysis
- Interactome mapping
---
### IntactComplex
Protein complex database.
**Initialization:**
```python
from bioservices import IntactComplex
i = IntactComplex()
```
**Key Methods:**
- `search(query)`: Search complexes
- `details(complex_ac)`: Complex details
**Use cases:**
- Protein complex composition
- Multi-protein assembly analysis
---
### OmniPath
Integrated signaling pathway database.
**Initialization:**
```python
from bioservices import OmniPath
o = OmniPath()
```
**Key Methods:**
- `interactions(datasets, organisms)`: Get interactions
- `ptms(datasets, organisms)`: Post-translational modifications
**Use cases:**
- Cell signaling analysis
- Regulatory network mapping
---
## Gene Ontology
### QuickGO
Gene Ontology annotation service.
**Initialization:**
```python
from bioservices import QuickGO
g = QuickGO()
```
**Key Methods:**
- `Term(go_id, frmt="obo")`
- Retrieve GO term information
- Returns: Term definition and metadata
- `Annotation(protein=None, goid=None, format="tsv")`
- Get GO annotations
- Returns: Annotations in requested format
**GO categories:**
- Biological Process (BP)
- Molecular Function (MF)
- Cellular Component (CC)
**Use cases:**
- Functional annotation
- Enrichment analysis
- GO term lookup
---
## Genomic Resources
### BioMart
Data mining tool for genomic data.
**Initialization:**
```python
from bioservices import BioMart
b = BioMart()
```
**Key Methods:**
- `datasets(dataset)`: List available datasets
- `attributes(dataset)`: List attributes
- `query(query_xml)`: Execute BioMart query
**Use cases:**
- Bulk genomic data retrieval
- Custom genome annotations
- SNP information
---
### ArrayExpress
Gene expression database.
**Initialization:**
```python
from bioservices import ArrayExpress
a = ArrayExpress()
```
**Key Methods:**
- `queryExperiments(keywords)`: Search experiments
- `retrieveExperiment(accession)`: Get experiment data
**Use cases:**
- Gene expression data
- Microarray analysis
- RNA-seq data retrieval
---
### ENA (European Nucleotide Archive)
Nucleotide sequence database.
**Initialization:**
```python
from bioservices import ENA
e = ENA()
```
**Key Methods:**
- `search_data(query)`: Search sequences
- `retrieve_data(accession)`: Retrieve sequences
**Use cases:**
- Nucleotide sequence retrieval
- Genome assembly access
---
## Structural Biology
### PDB (Protein Data Bank)
3D protein structure database.
**Initialization:**
```python
from bioservices import PDB
p = PDB()
```
**Key Methods:**
- `get_file(pdb_id, file_format)`: Download structure files
- `search(query)`: Search structures
**File formats:** pdb, cif, xml
**Use cases:**
- 3D structure retrieval
- Structure-based analysis
- PyMOL visualization
---
### Pfam
Protein family database.
**Initialization:**
```python
from bioservices import Pfam
p = Pfam()
```
**Key Methods:**
- `searchSequence(sequence)`: Find domains in sequence
- `getPfamEntry(pfam_id)`: Domain information
**Use cases:**
- Protein domain identification
- Family classification
- Functional motif discovery
---
## Specialized Resources
### BioModels
Systems biology model repository.
**Initialization:**
```python
from bioservices import BioModels
b = BioModels()
```
**Key Methods:**
- `get_model_by_id(model_id)`: Retrieve SBML model
**Use cases:**
- Systems biology modeling
- SBML model retrieval
---
### COG (Clusters of Orthologous Genes)
Orthologous gene classification.
**Initialization:**
```python
from bioservices import COG
c = COG()
```
**Use cases:**
- Orthology analysis
- Functional classification
---
### BiGG Models
Metabolic network models.
**Initialization:**
```python
from bioservices import BiGG
b = BiGG()
```
**Key Methods:**
- `list_models()`: Available models
- `get_model(model_id)`: Model details
**Use cases:**
- Metabolic network analysis
- Flux balance analysis
---
## General Patterns
### Error Handling
All services may throw exceptions. Wrap calls in try-except:
```python
try:
result = service.method(params)
if result:
# Process result
pass
except Exception as e:
print(f"Error: {e}")
```
### Verbosity Control
Most services support `verbose` parameter:
```python
service = Service(verbose=False) # Suppress HTTP logs
```
### Rate Limiting
Services have timeouts and rate limits:
```python
service.TIMEOUT = 30 # Adjust timeout
service.DELAY = 1 # Delay between requests (if supported)
```
### Output Formats
Common format parameters:
- `frmt`: "xml", "json", "tab", "txt", "fasta"
- `format`: Service-specific variants
### Caching
Some services cache results:
```python
service.CACHE = True # Enable caching
service.clear_cache() # Clear cache
```
## Additional Resources
For detailed API documentation:
- Official docs: https://bioservices.readthedocs.io/
- Individual service docs linked from main page
- Source code: https://github.com/cokelaer/bioservices