Initial commit
This commit is contained in:
460
skills/biomni/references/api_reference.md
Normal file
460
skills/biomni/references/api_reference.md
Normal file
@@ -0,0 +1,460 @@
|
||||
# Biomni API Reference
|
||||
|
||||
Comprehensive API documentation for the biomni framework.
|
||||
|
||||
## A1 Agent Class
|
||||
|
||||
The A1 class is the primary interface for interacting with biomni.
|
||||
|
||||
### Initialization
|
||||
|
||||
```python
|
||||
from biomni.agent import A1
|
||||
|
||||
agent = A1(
|
||||
path: str, # Path to data lake directory
|
||||
llm: str, # LLM model identifier
|
||||
verbose: bool = True, # Enable verbose logging
|
||||
mcp_config: str = None # Path to MCP server configuration
|
||||
)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
|
||||
- **`path`** (str, required) - Directory path for biomni data lake (~11GB). Data is automatically downloaded on first use if not present.
|
||||
|
||||
- **`llm`** (str, required) - LLM model identifier. Options include:
|
||||
- `'claude-sonnet-4-20250514'` - Recommended for balanced performance
|
||||
- `'claude-opus-4-20250514'` - Maximum capability
|
||||
- `'gpt-4'`, `'gpt-4-turbo'` - OpenAI models
|
||||
- `'gemini-2.0-flash-exp'` - Google Gemini
|
||||
- `'llama-3.3-70b-versatile'` - Via Groq
|
||||
- Custom model endpoints via provider configuration
|
||||
|
||||
- **`verbose`** (bool, optional, default=True) - Enable detailed logging of agent reasoning, tool use, and code execution.
|
||||
|
||||
- **`mcp_config`** (str, optional) - Path to MCP (Model Context Protocol) server configuration file for external tool integration.
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
# Basic initialization
|
||||
agent = A1(path='./biomni_data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
# With MCP integration
|
||||
agent = A1(
|
||||
path='./biomni_data',
|
||||
llm='claude-sonnet-4-20250514',
|
||||
mcp_config='./.biomni/mcp_config.json'
|
||||
)
|
||||
```
|
||||
|
||||
### Core Methods
|
||||
|
||||
#### `go(query: str) -> str`
|
||||
|
||||
Execute a biomedical research task autonomously.
|
||||
|
||||
```python
|
||||
result = agent.go(query: str)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- **`query`** (str) - Natural language description of the biomedical task to execute
|
||||
|
||||
**Returns:**
|
||||
- **`str`** - Final answer or analysis result from the agent
|
||||
|
||||
**Behavior:**
|
||||
1. Decomposes query into executable sub-tasks
|
||||
2. Retrieves relevant knowledge from integrated databases
|
||||
3. Generates and executes Python code for analysis
|
||||
4. Iterates on results until task completion
|
||||
5. Returns final synthesized answer
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
result = agent.go("""
|
||||
Identify genes associated with Alzheimer's disease from GWAS data.
|
||||
Perform pathway enrichment analysis on top hits.
|
||||
""")
|
||||
print(result)
|
||||
```
|
||||
|
||||
#### `save_conversation_history(output_path: str, format: str = 'pdf')`
|
||||
|
||||
Save complete conversation history including task, reasoning, code, and results.
|
||||
|
||||
```python
|
||||
agent.save_conversation_history(
|
||||
output_path: str,
|
||||
format: str = 'pdf'
|
||||
)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- **`output_path`** (str) - File path for saved report
|
||||
- **`format`** (str, optional, default='pdf') - Output format: `'pdf'`, `'html'`, or `'markdown'`
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
agent.save_conversation_history('reports/alzheimers_gwas_analysis.pdf')
|
||||
```
|
||||
|
||||
#### `reset()`
|
||||
|
||||
Reset agent state and clear conversation history.
|
||||
|
||||
```python
|
||||
agent.reset()
|
||||
```
|
||||
|
||||
Use when starting a new independent task to clear previous context.
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
# Task 1
|
||||
agent.go("Analyze dataset A")
|
||||
agent.save_conversation_history("task1.pdf")
|
||||
|
||||
# Reset for fresh context
|
||||
agent.reset()
|
||||
|
||||
# Task 2 - independent of Task 1
|
||||
agent.go("Analyze dataset B")
|
||||
```
|
||||
|
||||
### Configuration via default_config
|
||||
|
||||
Global configuration parameters accessible via `biomni.config.default_config`.
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
# LLM Configuration
|
||||
default_config.llm = "claude-sonnet-4-20250514"
|
||||
default_config.llm_temperature = 0.7
|
||||
|
||||
# Execution Parameters
|
||||
default_config.timeout_seconds = 1200 # 20 minutes
|
||||
default_config.max_iterations = 50 # Max reasoning loops
|
||||
default_config.max_tokens = 4096 # Max tokens per LLM call
|
||||
|
||||
# Code Execution
|
||||
default_config.enable_code_execution = True
|
||||
default_config.sandbox_mode = False # Enable for restricted execution
|
||||
|
||||
# Data and Caching
|
||||
default_config.data_cache_dir = "./biomni_cache"
|
||||
default_config.enable_caching = True
|
||||
```
|
||||
|
||||
**Key Parameters:**
|
||||
|
||||
- **`timeout_seconds`** (int, default=1200) - Maximum time for task execution. Increase for complex analyses.
|
||||
|
||||
- **`max_iterations`** (int, default=50) - Maximum agent reasoning loops. Prevents infinite loops.
|
||||
|
||||
- **`enable_code_execution`** (bool, default=True) - Allow agent to execute generated code. Disable for code generation only.
|
||||
|
||||
- **`sandbox_mode`** (bool, default=False) - Enable sandboxed code execution (requires additional setup).
|
||||
|
||||
## BiomniEval1 Evaluation Framework
|
||||
|
||||
Framework for benchmarking agent performance on biomedical tasks.
|
||||
|
||||
### Initialization
|
||||
|
||||
```python
|
||||
from biomni.eval import BiomniEval1
|
||||
|
||||
evaluator = BiomniEval1(
|
||||
dataset_path: str = None, # Path to evaluation dataset
|
||||
metrics: list = None # Evaluation metrics to compute
|
||||
)
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
evaluator = BiomniEval1()
|
||||
```
|
||||
|
||||
### Methods
|
||||
|
||||
#### `evaluate(task_type: str, instance_id: str, answer: str) -> float`
|
||||
|
||||
Evaluate agent answer against ground truth.
|
||||
|
||||
```python
|
||||
score = evaluator.evaluate(
|
||||
task_type: str, # Task category
|
||||
instance_id: str, # Specific task instance
|
||||
answer: str # Agent-generated answer
|
||||
)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- **`task_type`** (str) - Task category: `'crispr_design'`, `'scrna_analysis'`, `'gwas_interpretation'`, `'drug_admet'`, `'clinical_diagnosis'`
|
||||
- **`instance_id`** (str) - Unique identifier for task instance from dataset
|
||||
- **`answer`** (str) - Agent's answer to evaluate
|
||||
|
||||
**Returns:**
|
||||
- **`float`** - Evaluation score (0.0 to 1.0)
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
# Generate answer
|
||||
result = agent.go("Design CRISPR screen for autophagy genes")
|
||||
|
||||
# Evaluate
|
||||
score = evaluator.evaluate(
|
||||
task_type='crispr_design',
|
||||
instance_id='autophagy_001',
|
||||
answer=result
|
||||
)
|
||||
print(f"Score: {score:.2f}")
|
||||
```
|
||||
|
||||
#### `load_dataset() -> dict`
|
||||
|
||||
Load the Biomni-Eval1 benchmark dataset.
|
||||
|
||||
```python
|
||||
dataset = evaluator.load_dataset()
|
||||
```
|
||||
|
||||
**Returns:**
|
||||
- **`dict`** - Dictionary with task instances organized by task type
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
dataset = evaluator.load_dataset()
|
||||
|
||||
for task_type, instances in dataset.items():
|
||||
print(f"{task_type}: {len(instances)} instances")
|
||||
```
|
||||
|
||||
#### `run_benchmark(agent: A1, task_types: list = None) -> dict`
|
||||
|
||||
Run full benchmark evaluation on agent.
|
||||
|
||||
```python
|
||||
results = evaluator.run_benchmark(
|
||||
agent: A1,
|
||||
task_types: list = None # Specific task types or None for all
|
||||
)
|
||||
```
|
||||
|
||||
**Returns:**
|
||||
- **`dict`** - Results with scores, timing, and detailed metrics per task
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
results = evaluator.run_benchmark(
|
||||
agent=agent,
|
||||
task_types=['crispr_design', 'scrna_analysis']
|
||||
)
|
||||
|
||||
print(f"Overall accuracy: {results['mean_score']:.2f}")
|
||||
print(f"Average time: {results['mean_time']:.1f}s")
|
||||
```
|
||||
|
||||
## Data Lake API
|
||||
|
||||
Access integrated biomedical databases programmatically.
|
||||
|
||||
### Gene Database Queries
|
||||
|
||||
```python
|
||||
from biomni.data import GeneDB
|
||||
|
||||
gene_db = GeneDB(path='./biomni_data')
|
||||
|
||||
# Query gene information
|
||||
gene_info = gene_db.get_gene('BRCA1')
|
||||
# Returns: {'symbol': 'BRCA1', 'name': '...', 'function': '...', ...}
|
||||
|
||||
# Search genes by pathway
|
||||
pathway_genes = gene_db.search_by_pathway('DNA repair')
|
||||
# Returns: List of gene symbols in pathway
|
||||
|
||||
# Get gene interactions
|
||||
interactions = gene_db.get_interactions('TP53')
|
||||
# Returns: List of interacting genes with interaction types
|
||||
```
|
||||
|
||||
### Protein Structure Access
|
||||
|
||||
```python
|
||||
from biomni.data import ProteinDB
|
||||
|
||||
protein_db = ProteinDB(path='./biomni_data')
|
||||
|
||||
# Get AlphaFold structure
|
||||
structure = protein_db.get_structure('P38398') # BRCA1 UniProt ID
|
||||
# Returns: Path to PDB file or structure object
|
||||
|
||||
# Search PDB database
|
||||
pdb_entries = protein_db.search_pdb('kinase', resolution_max=2.5)
|
||||
# Returns: List of PDB IDs matching criteria
|
||||
```
|
||||
|
||||
### Clinical Data Access
|
||||
|
||||
```python
|
||||
from biomni.data import ClinicalDB
|
||||
|
||||
clinical_db = ClinicalDB(path='./biomni_data')
|
||||
|
||||
# Query ClinVar variants
|
||||
variant_info = clinical_db.get_variant('rs429358') # APOE4 variant
|
||||
# Returns: {'significance': '...', 'disease': '...', 'frequency': ...}
|
||||
|
||||
# Search OMIM for disease
|
||||
disease_info = clinical_db.search_omim('Alzheimer')
|
||||
# Returns: List of OMIM entries with gene associations
|
||||
```
|
||||
|
||||
### Literature Search
|
||||
|
||||
```python
|
||||
from biomni.data import LiteratureDB
|
||||
|
||||
lit_db = LiteratureDB(path='./biomni_data')
|
||||
|
||||
# Search PubMed abstracts
|
||||
papers = lit_db.search('CRISPR screening cancer', max_results=10)
|
||||
# Returns: List of paper dictionaries with titles, abstracts, PMIDs
|
||||
|
||||
# Get citations for paper
|
||||
citations = lit_db.get_citations('PMID:12345678')
|
||||
# Returns: List of citing papers
|
||||
```
|
||||
|
||||
## MCP Server Integration
|
||||
|
||||
Extend biomni with external tools via Model Context Protocol.
|
||||
|
||||
### Configuration Format
|
||||
|
||||
Create `.biomni/mcp_config.json`:
|
||||
|
||||
```json
|
||||
{
|
||||
"servers": {
|
||||
"fda-drugs": {
|
||||
"command": "python",
|
||||
"args": ["-m", "mcp_server_fda"],
|
||||
"env": {
|
||||
"FDA_API_KEY": "${FDA_API_KEY}"
|
||||
}
|
||||
},
|
||||
"web-search": {
|
||||
"command": "npx",
|
||||
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
|
||||
"env": {
|
||||
"BRAVE_API_KEY": "${BRAVE_API_KEY}"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Using MCP Tools in Tasks
|
||||
|
||||
```python
|
||||
# Initialize with MCP config
|
||||
agent = A1(
|
||||
path='./data',
|
||||
llm='claude-sonnet-4-20250514',
|
||||
mcp_config='./.biomni/mcp_config.json'
|
||||
)
|
||||
|
||||
# Agent can now use MCP tools automatically
|
||||
result = agent.go("""
|
||||
Search for FDA-approved drugs targeting EGFR.
|
||||
Get their approval dates and indications.
|
||||
""")
|
||||
# Agent uses fda-drugs MCP server automatically
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
Common exceptions and handling strategies:
|
||||
|
||||
```python
|
||||
from biomni.exceptions import (
|
||||
BiomniException,
|
||||
LLMError,
|
||||
CodeExecutionError,
|
||||
DataNotFoundError,
|
||||
TimeoutError
|
||||
)
|
||||
|
||||
try:
|
||||
result = agent.go("Complex biomedical task")
|
||||
except TimeoutError:
|
||||
# Task exceeded timeout_seconds
|
||||
print("Task timed out. Consider increasing timeout.")
|
||||
default_config.timeout_seconds = 3600
|
||||
except CodeExecutionError as e:
|
||||
# Generated code failed to execute
|
||||
print(f"Code execution error: {e}")
|
||||
# Review generated code in conversation history
|
||||
except DataNotFoundError:
|
||||
# Required data not in data lake
|
||||
print("Data not found. Ensure data lake is downloaded.")
|
||||
except LLMError as e:
|
||||
# LLM API error
|
||||
print(f"LLM error: {e}")
|
||||
# Check API keys and rate limits
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
### Efficient API Usage
|
||||
|
||||
1. **Reuse agent instances** for related tasks to maintain context
|
||||
2. **Set appropriate timeouts** based on task complexity
|
||||
3. **Use caching** to avoid redundant data downloads
|
||||
4. **Monitor iterations** to detect reasoning loops early
|
||||
|
||||
### Production Deployment
|
||||
|
||||
```python
|
||||
from biomni.agent import A1
|
||||
from biomni.config import default_config
|
||||
import logging
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
# Production settings
|
||||
default_config.timeout_seconds = 3600
|
||||
default_config.max_iterations = 100
|
||||
default_config.sandbox_mode = True # Enable sandboxing
|
||||
|
||||
# Initialize with error handling
|
||||
try:
|
||||
agent = A1(path='/data/biomni', llm='claude-sonnet-4-20250514')
|
||||
result = agent.go(task_query)
|
||||
agent.save_conversation_history(f'reports/{task_id}.pdf')
|
||||
except Exception as e:
|
||||
logging.error(f"Task {task_id} failed: {e}")
|
||||
# Handle failure appropriately
|
||||
```
|
||||
|
||||
### Memory Management
|
||||
|
||||
For large-scale analyses:
|
||||
|
||||
```python
|
||||
# Process datasets in chunks
|
||||
chunk_results = []
|
||||
for chunk in dataset_chunks:
|
||||
agent.reset() # Clear memory between chunks
|
||||
result = agent.go(f"Analyze chunk: {chunk}")
|
||||
chunk_results.append(result)
|
||||
|
||||
# Combine results
|
||||
final_result = combine_results(chunk_results)
|
||||
```
|
||||
Reference in New Issue
Block a user