Initial commit
This commit is contained in:
309
skills/biomni/SKILL.md
Normal file
309
skills/biomni/SKILL.md
Normal file
@@ -0,0 +1,309 @@
|
||||
---
|
||||
name: biomni
|
||||
description: Autonomous biomedical AI agent framework for executing complex research tasks across genomics, drug discovery, molecular biology, and clinical analysis. Use this skill when conducting multi-step biomedical research including CRISPR screening design, single-cell RNA-seq analysis, ADMET prediction, GWAS interpretation, rare disease diagnosis, or lab protocol optimization. Leverages LLM reasoning with code execution and integrated biomedical databases.
|
||||
---
|
||||
|
||||
# Biomni
|
||||
|
||||
## Overview
|
||||
|
||||
Biomni is an open-source biomedical AI agent framework from Stanford's SNAP lab that autonomously executes complex research tasks across biomedical domains. Use this skill when working on multi-step biological reasoning tasks, analyzing biomedical data, or conducting research spanning genomics, drug discovery, molecular biology, and clinical analysis.
|
||||
|
||||
## Core Capabilities
|
||||
|
||||
Biomni excels at:
|
||||
|
||||
1. **Multi-step biological reasoning** - Autonomous task decomposition and planning for complex biomedical queries
|
||||
2. **Code generation and execution** - Dynamic analysis pipeline creation for data processing
|
||||
3. **Knowledge retrieval** - Access to ~11GB of integrated biomedical databases and literature
|
||||
4. **Cross-domain problem solving** - Unified interface for genomics, proteomics, drug discovery, and clinical tasks
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
Use biomni for:
|
||||
- **CRISPR screening** - Design screens, prioritize genes, analyze knockout effects
|
||||
- **Single-cell RNA-seq** - Cell type annotation, differential expression, trajectory analysis
|
||||
- **Drug discovery** - ADMET prediction, target identification, compound optimization
|
||||
- **GWAS analysis** - Variant interpretation, causal gene identification, pathway enrichment
|
||||
- **Clinical genomics** - Rare disease diagnosis, variant pathogenicity, phenotype-genotype mapping
|
||||
- **Lab protocols** - Protocol optimization, literature synthesis, experimental design
|
||||
|
||||
## Quick Start
|
||||
|
||||
### Installation and Setup
|
||||
|
||||
Install Biomni and configure API keys for LLM providers:
|
||||
|
||||
```bash
|
||||
uv pip install biomni --upgrade
|
||||
```
|
||||
|
||||
Configure API keys (store in `.env` file or environment variables):
|
||||
```bash
|
||||
export ANTHROPIC_API_KEY="your-key-here"
|
||||
# Optional: OpenAI, Azure, Google, Groq, AWS Bedrock keys
|
||||
```
|
||||
|
||||
Use `scripts/setup_environment.py` for interactive setup assistance.
|
||||
|
||||
### Basic Usage Pattern
|
||||
|
||||
```python
|
||||
from biomni.agent import A1
|
||||
|
||||
# Initialize agent with data path and LLM choice
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
# Execute biomedical task autonomously
|
||||
agent.go("Your biomedical research question or task")
|
||||
|
||||
# Save conversation history and results
|
||||
agent.save_conversation_history("report.pdf")
|
||||
```
|
||||
|
||||
## Working with Biomni
|
||||
|
||||
### 1. Agent Initialization
|
||||
|
||||
The A1 class is the primary interface for biomni:
|
||||
|
||||
```python
|
||||
from biomni.agent import A1
|
||||
from biomni.config import default_config
|
||||
|
||||
# Basic initialization
|
||||
agent = A1(
|
||||
path='./data', # Path to data lake (~11GB downloaded on first use)
|
||||
llm='claude-sonnet-4-20250514' # LLM model selection
|
||||
)
|
||||
|
||||
# Advanced configuration
|
||||
default_config.llm = "gpt-4"
|
||||
default_config.timeout_seconds = 1200
|
||||
default_config.max_iterations = 50
|
||||
```
|
||||
|
||||
**Supported LLM Providers:**
|
||||
- Anthropic Claude (recommended): `claude-sonnet-4-20250514`, `claude-opus-4-20250514`
|
||||
- OpenAI: `gpt-4`, `gpt-4-turbo`
|
||||
- Azure OpenAI: via Azure configuration
|
||||
- Google Gemini: `gemini-2.0-flash-exp`
|
||||
- Groq: `llama-3.3-70b-versatile`
|
||||
- AWS Bedrock: Various models via Bedrock API
|
||||
|
||||
See `references/llm_providers.md` for detailed LLM configuration instructions.
|
||||
|
||||
### 2. Task Execution Workflow
|
||||
|
||||
Biomni follows an autonomous agent workflow:
|
||||
|
||||
```python
|
||||
# Step 1: Initialize agent
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
# Step 2: Execute task with natural language query
|
||||
result = agent.go("""
|
||||
Design a CRISPR screen to identify genes regulating autophagy in
|
||||
HEK293 cells. Prioritize genes based on essentiality and pathway
|
||||
relevance.
|
||||
""")
|
||||
|
||||
# Step 3: Review generated code and analysis
|
||||
# Agent autonomously:
|
||||
# - Decomposes task into sub-steps
|
||||
# - Retrieves relevant biological knowledge
|
||||
# - Generates and executes analysis code
|
||||
# - Interprets results and provides insights
|
||||
|
||||
# Step 4: Save results
|
||||
agent.save_conversation_history("autophagy_screen_report.pdf")
|
||||
```
|
||||
|
||||
### 3. Common Task Patterns
|
||||
|
||||
#### CRISPR Screening Design
|
||||
```python
|
||||
agent.go("""
|
||||
Design a genome-wide CRISPR knockout screen for identifying genes
|
||||
affecting [phenotype] in [cell type]. Include:
|
||||
1. sgRNA library design
|
||||
2. Gene prioritization criteria
|
||||
3. Expected hit genes based on pathway analysis
|
||||
""")
|
||||
```
|
||||
|
||||
#### Single-Cell RNA-seq Analysis
|
||||
```python
|
||||
agent.go("""
|
||||
Analyze this single-cell RNA-seq dataset:
|
||||
- Perform quality control and filtering
|
||||
- Identify cell populations via clustering
|
||||
- Annotate cell types using marker genes
|
||||
- Conduct differential expression between conditions
|
||||
File path: [path/to/data.h5ad]
|
||||
""")
|
||||
```
|
||||
|
||||
#### Drug ADMET Prediction
|
||||
```python
|
||||
agent.go("""
|
||||
Predict ADMET properties for these drug candidates:
|
||||
[SMILES strings or compound IDs]
|
||||
Focus on:
|
||||
- Absorption (Caco-2 permeability, HIA)
|
||||
- Distribution (plasma protein binding, BBB penetration)
|
||||
- Metabolism (CYP450 interaction)
|
||||
- Excretion (clearance)
|
||||
- Toxicity (hERG liability, hepatotoxicity)
|
||||
""")
|
||||
```
|
||||
|
||||
#### GWAS Variant Interpretation
|
||||
```python
|
||||
agent.go("""
|
||||
Interpret GWAS results for [trait/disease]:
|
||||
- Identify genome-wide significant variants
|
||||
- Map variants to causal genes
|
||||
- Perform pathway enrichment analysis
|
||||
- Predict functional consequences
|
||||
Summary statistics file: [path/to/gwas_summary.txt]
|
||||
""")
|
||||
```
|
||||
|
||||
See `references/use_cases.md` for comprehensive task examples across all biomedical domains.
|
||||
|
||||
### 4. Data Integration
|
||||
|
||||
Biomni integrates ~11GB of biomedical knowledge sources:
|
||||
- **Gene databases** - Ensembl, NCBI Gene, UniProt
|
||||
- **Protein structures** - PDB, AlphaFold
|
||||
- **Clinical datasets** - ClinVar, OMIM, HPO
|
||||
- **Literature indices** - PubMed abstracts, biomedical ontologies
|
||||
- **Pathway databases** - KEGG, Reactome, GO
|
||||
|
||||
Data is automatically downloaded to the specified `path` on first use.
|
||||
|
||||
### 5. MCP Server Integration
|
||||
|
||||
Extend biomni with external tools via Model Context Protocol:
|
||||
|
||||
```python
|
||||
# MCP servers can provide:
|
||||
# - FDA drug databases
|
||||
# - Web search for literature
|
||||
# - Custom biomedical APIs
|
||||
# - Laboratory equipment interfaces
|
||||
|
||||
# Configure MCP servers in .biomni/mcp_config.json
|
||||
```
|
||||
|
||||
### 6. Evaluation Framework
|
||||
|
||||
Benchmark agent performance on biomedical tasks:
|
||||
|
||||
```python
|
||||
from biomni.eval import BiomniEval1
|
||||
|
||||
evaluator = BiomniEval1()
|
||||
|
||||
# Evaluate on specific task types
|
||||
score = evaluator.evaluate(
|
||||
task_type='crispr_design',
|
||||
instance_id='test_001',
|
||||
answer=agent_output
|
||||
)
|
||||
|
||||
# Access evaluation dataset
|
||||
dataset = evaluator.load_dataset()
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
### Task Formulation
|
||||
- **Be specific** - Include biological context, organism, cell type, conditions
|
||||
- **Specify outputs** - Clearly state desired analysis outputs and formats
|
||||
- **Provide data paths** - Include file paths for datasets to analyze
|
||||
- **Set constraints** - Mention time/computational limits if relevant
|
||||
|
||||
### Security Considerations
|
||||
⚠️ **Important**: Biomni executes LLM-generated code with full system privileges. For production use:
|
||||
- Run in isolated environments (Docker, VMs)
|
||||
- Avoid exposing sensitive credentials
|
||||
- Review generated code before execution in sensitive contexts
|
||||
- Use sandboxed execution environments when possible
|
||||
|
||||
### Performance Optimization
|
||||
- **Choose appropriate LLMs** - Claude Sonnet 4 recommended for balance of speed/quality
|
||||
- **Set reasonable timeouts** - Adjust `default_config.timeout_seconds` for complex tasks
|
||||
- **Monitor iterations** - Track `max_iterations` to prevent runaway loops
|
||||
- **Cache data** - Reuse downloaded data lake across sessions
|
||||
|
||||
### Result Documentation
|
||||
```python
|
||||
# Always save conversation history for reproducibility
|
||||
agent.save_conversation_history("results/project_name_YYYYMMDD.pdf")
|
||||
|
||||
# Include in reports:
|
||||
# - Original task description
|
||||
# - Generated analysis code
|
||||
# - Results and interpretations
|
||||
# - Data sources used
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
### References
|
||||
Detailed documentation available in the `references/` directory:
|
||||
|
||||
- **`api_reference.md`** - Complete API documentation for A1 class, configuration, and evaluation
|
||||
- **`llm_providers.md`** - LLM provider setup (Anthropic, OpenAI, Azure, Google, Groq, AWS)
|
||||
- **`use_cases.md`** - Comprehensive task examples for all biomedical domains
|
||||
|
||||
### Scripts
|
||||
Helper scripts in the `scripts/` directory:
|
||||
|
||||
- **`setup_environment.py`** - Interactive environment and API key configuration
|
||||
- **`generate_report.py`** - Enhanced PDF report generation with custom formatting
|
||||
|
||||
### External Resources
|
||||
- **GitHub**: https://github.com/snap-stanford/biomni
|
||||
- **Web Platform**: https://biomni.stanford.edu
|
||||
- **Paper**: https://www.biorxiv.org/content/10.1101/2025.05.30.656746v1
|
||||
- **Model**: https://huggingface.co/biomni/Biomni-R0-32B-Preview
|
||||
- **Evaluation Dataset**: https://huggingface.co/datasets/biomni/Eval1
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
**Data download fails**
|
||||
```python
|
||||
# Manually trigger data lake download
|
||||
agent = A1(path='./data', llm='your-llm')
|
||||
# First .go() call will download data
|
||||
```
|
||||
|
||||
**API key errors**
|
||||
```bash
|
||||
# Verify environment variables
|
||||
echo $ANTHROPIC_API_KEY
|
||||
# Or check .env file in working directory
|
||||
```
|
||||
|
||||
**Timeout on complex tasks**
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
default_config.timeout_seconds = 3600 # 1 hour
|
||||
```
|
||||
|
||||
**Memory issues with large datasets**
|
||||
- Use streaming for large files
|
||||
- Process data in chunks
|
||||
- Increase system memory allocation
|
||||
|
||||
### Getting Help
|
||||
|
||||
For issues or questions:
|
||||
- GitHub Issues: https://github.com/snap-stanford/biomni/issues
|
||||
- Documentation: Check `references/` files for detailed guidance
|
||||
- Community: Stanford SNAP lab and biomni contributors
|
||||
460
skills/biomni/references/api_reference.md
Normal file
460
skills/biomni/references/api_reference.md
Normal file
@@ -0,0 +1,460 @@
|
||||
# Biomni API Reference
|
||||
|
||||
Comprehensive API documentation for the biomni framework.
|
||||
|
||||
## A1 Agent Class
|
||||
|
||||
The A1 class is the primary interface for interacting with biomni.
|
||||
|
||||
### Initialization
|
||||
|
||||
```python
|
||||
from biomni.agent import A1
|
||||
|
||||
agent = A1(
|
||||
path: str, # Path to data lake directory
|
||||
llm: str, # LLM model identifier
|
||||
verbose: bool = True, # Enable verbose logging
|
||||
mcp_config: str = None # Path to MCP server configuration
|
||||
)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
|
||||
- **`path`** (str, required) - Directory path for biomni data lake (~11GB). Data is automatically downloaded on first use if not present.
|
||||
|
||||
- **`llm`** (str, required) - LLM model identifier. Options include:
|
||||
- `'claude-sonnet-4-20250514'` - Recommended for balanced performance
|
||||
- `'claude-opus-4-20250514'` - Maximum capability
|
||||
- `'gpt-4'`, `'gpt-4-turbo'` - OpenAI models
|
||||
- `'gemini-2.0-flash-exp'` - Google Gemini
|
||||
- `'llama-3.3-70b-versatile'` - Via Groq
|
||||
- Custom model endpoints via provider configuration
|
||||
|
||||
- **`verbose`** (bool, optional, default=True) - Enable detailed logging of agent reasoning, tool use, and code execution.
|
||||
|
||||
- **`mcp_config`** (str, optional) - Path to MCP (Model Context Protocol) server configuration file for external tool integration.
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
# Basic initialization
|
||||
agent = A1(path='./biomni_data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
# With MCP integration
|
||||
agent = A1(
|
||||
path='./biomni_data',
|
||||
llm='claude-sonnet-4-20250514',
|
||||
mcp_config='./.biomni/mcp_config.json'
|
||||
)
|
||||
```
|
||||
|
||||
### Core Methods
|
||||
|
||||
#### `go(query: str) -> str`
|
||||
|
||||
Execute a biomedical research task autonomously.
|
||||
|
||||
```python
|
||||
result = agent.go(query: str)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- **`query`** (str) - Natural language description of the biomedical task to execute
|
||||
|
||||
**Returns:**
|
||||
- **`str`** - Final answer or analysis result from the agent
|
||||
|
||||
**Behavior:**
|
||||
1. Decomposes query into executable sub-tasks
|
||||
2. Retrieves relevant knowledge from integrated databases
|
||||
3. Generates and executes Python code for analysis
|
||||
4. Iterates on results until task completion
|
||||
5. Returns final synthesized answer
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
result = agent.go("""
|
||||
Identify genes associated with Alzheimer's disease from GWAS data.
|
||||
Perform pathway enrichment analysis on top hits.
|
||||
""")
|
||||
print(result)
|
||||
```
|
||||
|
||||
#### `save_conversation_history(output_path: str, format: str = 'pdf')`
|
||||
|
||||
Save complete conversation history including task, reasoning, code, and results.
|
||||
|
||||
```python
|
||||
agent.save_conversation_history(
|
||||
output_path: str,
|
||||
format: str = 'pdf'
|
||||
)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- **`output_path`** (str) - File path for saved report
|
||||
- **`format`** (str, optional, default='pdf') - Output format: `'pdf'`, `'html'`, or `'markdown'`
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
agent.save_conversation_history('reports/alzheimers_gwas_analysis.pdf')
|
||||
```
|
||||
|
||||
#### `reset()`
|
||||
|
||||
Reset agent state and clear conversation history.
|
||||
|
||||
```python
|
||||
agent.reset()
|
||||
```
|
||||
|
||||
Use when starting a new independent task to clear previous context.
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
# Task 1
|
||||
agent.go("Analyze dataset A")
|
||||
agent.save_conversation_history("task1.pdf")
|
||||
|
||||
# Reset for fresh context
|
||||
agent.reset()
|
||||
|
||||
# Task 2 - independent of Task 1
|
||||
agent.go("Analyze dataset B")
|
||||
```
|
||||
|
||||
### Configuration via default_config
|
||||
|
||||
Global configuration parameters accessible via `biomni.config.default_config`.
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
# LLM Configuration
|
||||
default_config.llm = "claude-sonnet-4-20250514"
|
||||
default_config.llm_temperature = 0.7
|
||||
|
||||
# Execution Parameters
|
||||
default_config.timeout_seconds = 1200 # 20 minutes
|
||||
default_config.max_iterations = 50 # Max reasoning loops
|
||||
default_config.max_tokens = 4096 # Max tokens per LLM call
|
||||
|
||||
# Code Execution
|
||||
default_config.enable_code_execution = True
|
||||
default_config.sandbox_mode = False # Enable for restricted execution
|
||||
|
||||
# Data and Caching
|
||||
default_config.data_cache_dir = "./biomni_cache"
|
||||
default_config.enable_caching = True
|
||||
```
|
||||
|
||||
**Key Parameters:**
|
||||
|
||||
- **`timeout_seconds`** (int, default=1200) - Maximum time for task execution. Increase for complex analyses.
|
||||
|
||||
- **`max_iterations`** (int, default=50) - Maximum agent reasoning loops. Prevents infinite loops.
|
||||
|
||||
- **`enable_code_execution`** (bool, default=True) - Allow agent to execute generated code. Disable for code generation only.
|
||||
|
||||
- **`sandbox_mode`** (bool, default=False) - Enable sandboxed code execution (requires additional setup).
|
||||
|
||||
## BiomniEval1 Evaluation Framework
|
||||
|
||||
Framework for benchmarking agent performance on biomedical tasks.
|
||||
|
||||
### Initialization
|
||||
|
||||
```python
|
||||
from biomni.eval import BiomniEval1
|
||||
|
||||
evaluator = BiomniEval1(
|
||||
dataset_path: str = None, # Path to evaluation dataset
|
||||
metrics: list = None # Evaluation metrics to compute
|
||||
)
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
evaluator = BiomniEval1()
|
||||
```
|
||||
|
||||
### Methods
|
||||
|
||||
#### `evaluate(task_type: str, instance_id: str, answer: str) -> float`
|
||||
|
||||
Evaluate agent answer against ground truth.
|
||||
|
||||
```python
|
||||
score = evaluator.evaluate(
|
||||
task_type: str, # Task category
|
||||
instance_id: str, # Specific task instance
|
||||
answer: str # Agent-generated answer
|
||||
)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- **`task_type`** (str) - Task category: `'crispr_design'`, `'scrna_analysis'`, `'gwas_interpretation'`, `'drug_admet'`, `'clinical_diagnosis'`
|
||||
- **`instance_id`** (str) - Unique identifier for task instance from dataset
|
||||
- **`answer`** (str) - Agent's answer to evaluate
|
||||
|
||||
**Returns:**
|
||||
- **`float`** - Evaluation score (0.0 to 1.0)
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
# Generate answer
|
||||
result = agent.go("Design CRISPR screen for autophagy genes")
|
||||
|
||||
# Evaluate
|
||||
score = evaluator.evaluate(
|
||||
task_type='crispr_design',
|
||||
instance_id='autophagy_001',
|
||||
answer=result
|
||||
)
|
||||
print(f"Score: {score:.2f}")
|
||||
```
|
||||
|
||||
#### `load_dataset() -> dict`
|
||||
|
||||
Load the Biomni-Eval1 benchmark dataset.
|
||||
|
||||
```python
|
||||
dataset = evaluator.load_dataset()
|
||||
```
|
||||
|
||||
**Returns:**
|
||||
- **`dict`** - Dictionary with task instances organized by task type
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
dataset = evaluator.load_dataset()
|
||||
|
||||
for task_type, instances in dataset.items():
|
||||
print(f"{task_type}: {len(instances)} instances")
|
||||
```
|
||||
|
||||
#### `run_benchmark(agent: A1, task_types: list = None) -> dict`
|
||||
|
||||
Run full benchmark evaluation on agent.
|
||||
|
||||
```python
|
||||
results = evaluator.run_benchmark(
|
||||
agent: A1,
|
||||
task_types: list = None # Specific task types or None for all
|
||||
)
|
||||
```
|
||||
|
||||
**Returns:**
|
||||
- **`dict`** - Results with scores, timing, and detailed metrics per task
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
results = evaluator.run_benchmark(
|
||||
agent=agent,
|
||||
task_types=['crispr_design', 'scrna_analysis']
|
||||
)
|
||||
|
||||
print(f"Overall accuracy: {results['mean_score']:.2f}")
|
||||
print(f"Average time: {results['mean_time']:.1f}s")
|
||||
```
|
||||
|
||||
## Data Lake API
|
||||
|
||||
Access integrated biomedical databases programmatically.
|
||||
|
||||
### Gene Database Queries
|
||||
|
||||
```python
|
||||
from biomni.data import GeneDB
|
||||
|
||||
gene_db = GeneDB(path='./biomni_data')
|
||||
|
||||
# Query gene information
|
||||
gene_info = gene_db.get_gene('BRCA1')
|
||||
# Returns: {'symbol': 'BRCA1', 'name': '...', 'function': '...', ...}
|
||||
|
||||
# Search genes by pathway
|
||||
pathway_genes = gene_db.search_by_pathway('DNA repair')
|
||||
# Returns: List of gene symbols in pathway
|
||||
|
||||
# Get gene interactions
|
||||
interactions = gene_db.get_interactions('TP53')
|
||||
# Returns: List of interacting genes with interaction types
|
||||
```
|
||||
|
||||
### Protein Structure Access
|
||||
|
||||
```python
|
||||
from biomni.data import ProteinDB
|
||||
|
||||
protein_db = ProteinDB(path='./biomni_data')
|
||||
|
||||
# Get AlphaFold structure
|
||||
structure = protein_db.get_structure('P38398') # BRCA1 UniProt ID
|
||||
# Returns: Path to PDB file or structure object
|
||||
|
||||
# Search PDB database
|
||||
pdb_entries = protein_db.search_pdb('kinase', resolution_max=2.5)
|
||||
# Returns: List of PDB IDs matching criteria
|
||||
```
|
||||
|
||||
### Clinical Data Access
|
||||
|
||||
```python
|
||||
from biomni.data import ClinicalDB
|
||||
|
||||
clinical_db = ClinicalDB(path='./biomni_data')
|
||||
|
||||
# Query ClinVar variants
|
||||
variant_info = clinical_db.get_variant('rs429358') # APOE4 variant
|
||||
# Returns: {'significance': '...', 'disease': '...', 'frequency': ...}
|
||||
|
||||
# Search OMIM for disease
|
||||
disease_info = clinical_db.search_omim('Alzheimer')
|
||||
# Returns: List of OMIM entries with gene associations
|
||||
```
|
||||
|
||||
### Literature Search
|
||||
|
||||
```python
|
||||
from biomni.data import LiteratureDB
|
||||
|
||||
lit_db = LiteratureDB(path='./biomni_data')
|
||||
|
||||
# Search PubMed abstracts
|
||||
papers = lit_db.search('CRISPR screening cancer', max_results=10)
|
||||
# Returns: List of paper dictionaries with titles, abstracts, PMIDs
|
||||
|
||||
# Get citations for paper
|
||||
citations = lit_db.get_citations('PMID:12345678')
|
||||
# Returns: List of citing papers
|
||||
```
|
||||
|
||||
## MCP Server Integration
|
||||
|
||||
Extend biomni with external tools via Model Context Protocol.
|
||||
|
||||
### Configuration Format
|
||||
|
||||
Create `.biomni/mcp_config.json`:
|
||||
|
||||
```json
|
||||
{
|
||||
"servers": {
|
||||
"fda-drugs": {
|
||||
"command": "python",
|
||||
"args": ["-m", "mcp_server_fda"],
|
||||
"env": {
|
||||
"FDA_API_KEY": "${FDA_API_KEY}"
|
||||
}
|
||||
},
|
||||
"web-search": {
|
||||
"command": "npx",
|
||||
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
|
||||
"env": {
|
||||
"BRAVE_API_KEY": "${BRAVE_API_KEY}"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Using MCP Tools in Tasks
|
||||
|
||||
```python
|
||||
# Initialize with MCP config
|
||||
agent = A1(
|
||||
path='./data',
|
||||
llm='claude-sonnet-4-20250514',
|
||||
mcp_config='./.biomni/mcp_config.json'
|
||||
)
|
||||
|
||||
# Agent can now use MCP tools automatically
|
||||
result = agent.go("""
|
||||
Search for FDA-approved drugs targeting EGFR.
|
||||
Get their approval dates and indications.
|
||||
""")
|
||||
# Agent uses fda-drugs MCP server automatically
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
Common exceptions and handling strategies:
|
||||
|
||||
```python
|
||||
from biomni.exceptions import (
|
||||
BiomniException,
|
||||
LLMError,
|
||||
CodeExecutionError,
|
||||
DataNotFoundError,
|
||||
TimeoutError
|
||||
)
|
||||
|
||||
try:
|
||||
result = agent.go("Complex biomedical task")
|
||||
except TimeoutError:
|
||||
# Task exceeded timeout_seconds
|
||||
print("Task timed out. Consider increasing timeout.")
|
||||
default_config.timeout_seconds = 3600
|
||||
except CodeExecutionError as e:
|
||||
# Generated code failed to execute
|
||||
print(f"Code execution error: {e}")
|
||||
# Review generated code in conversation history
|
||||
except DataNotFoundError:
|
||||
# Required data not in data lake
|
||||
print("Data not found. Ensure data lake is downloaded.")
|
||||
except LLMError as e:
|
||||
# LLM API error
|
||||
print(f"LLM error: {e}")
|
||||
# Check API keys and rate limits
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
### Efficient API Usage
|
||||
|
||||
1. **Reuse agent instances** for related tasks to maintain context
|
||||
2. **Set appropriate timeouts** based on task complexity
|
||||
3. **Use caching** to avoid redundant data downloads
|
||||
4. **Monitor iterations** to detect reasoning loops early
|
||||
|
||||
### Production Deployment
|
||||
|
||||
```python
|
||||
from biomni.agent import A1
|
||||
from biomni.config import default_config
|
||||
import logging
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
# Production settings
|
||||
default_config.timeout_seconds = 3600
|
||||
default_config.max_iterations = 100
|
||||
default_config.sandbox_mode = True # Enable sandboxing
|
||||
|
||||
# Initialize with error handling
|
||||
try:
|
||||
agent = A1(path='/data/biomni', llm='claude-sonnet-4-20250514')
|
||||
result = agent.go(task_query)
|
||||
agent.save_conversation_history(f'reports/{task_id}.pdf')
|
||||
except Exception as e:
|
||||
logging.error(f"Task {task_id} failed: {e}")
|
||||
# Handle failure appropriately
|
||||
```
|
||||
|
||||
### Memory Management
|
||||
|
||||
For large-scale analyses:
|
||||
|
||||
```python
|
||||
# Process datasets in chunks
|
||||
chunk_results = []
|
||||
for chunk in dataset_chunks:
|
||||
agent.reset() # Clear memory between chunks
|
||||
result = agent.go(f"Analyze chunk: {chunk}")
|
||||
chunk_results.append(result)
|
||||
|
||||
# Combine results
|
||||
final_result = combine_results(chunk_results)
|
||||
```
|
||||
493
skills/biomni/references/llm_providers.md
Normal file
493
skills/biomni/references/llm_providers.md
Normal file
@@ -0,0 +1,493 @@
|
||||
# LLM Provider Configuration
|
||||
|
||||
Comprehensive guide for configuring different LLM providers with biomni.
|
||||
|
||||
## Overview
|
||||
|
||||
Biomni supports multiple LLM providers for flexible deployment across different infrastructure and cost requirements. The framework abstracts provider differences through a unified interface.
|
||||
|
||||
## Supported Providers
|
||||
|
||||
1. **Anthropic Claude** (Recommended)
|
||||
2. **OpenAI**
|
||||
3. **Azure OpenAI**
|
||||
4. **Google Gemini**
|
||||
5. **Groq**
|
||||
6. **AWS Bedrock**
|
||||
7. **Custom Endpoints**
|
||||
|
||||
## Anthropic Claude
|
||||
|
||||
**Recommended for:** Best balance of reasoning quality, speed, and biomedical knowledge.
|
||||
|
||||
### Setup
|
||||
|
||||
```bash
|
||||
# Set API key
|
||||
export ANTHROPIC_API_KEY="sk-ant-..."
|
||||
|
||||
# Or in .env file
|
||||
echo "ANTHROPIC_API_KEY=sk-ant-..." >> .env
|
||||
```
|
||||
|
||||
### Available Models
|
||||
|
||||
```python
|
||||
from biomni.agent import A1
|
||||
|
||||
# Sonnet 4 - Balanced performance (recommended)
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
# Opus 4 - Maximum capability
|
||||
agent = A1(path='./data', llm='claude-opus-4-20250514')
|
||||
|
||||
# Haiku 4 - Fast and economical
|
||||
agent = A1(path='./data', llm='claude-haiku-4-20250514')
|
||||
```
|
||||
|
||||
### Configuration Options
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
default_config.llm = "claude-sonnet-4-20250514"
|
||||
default_config.llm_temperature = 0.7
|
||||
default_config.max_tokens = 4096
|
||||
default_config.anthropic_api_key = "sk-ant-..." # Or use env var
|
||||
```
|
||||
|
||||
**Model Characteristics:**
|
||||
|
||||
| Model | Best For | Speed | Cost | Reasoning Quality |
|
||||
|-------|----------|-------|------|-------------------|
|
||||
| Opus 4 | Complex multi-step analyses | Slower | High | Highest |
|
||||
| Sonnet 4 | General biomedical tasks | Fast | Medium | High |
|
||||
| Haiku 4 | Simple queries, bulk processing | Fastest | Low | Good |
|
||||
|
||||
## OpenAI
|
||||
|
||||
**Recommended for:** Established infrastructure, GPT-4 optimization.
|
||||
|
||||
### Setup
|
||||
|
||||
```bash
|
||||
export OPENAI_API_KEY="sk-..."
|
||||
```
|
||||
|
||||
### Available Models
|
||||
|
||||
```python
|
||||
# GPT-4 Turbo
|
||||
agent = A1(path='./data', llm='gpt-4-turbo')
|
||||
|
||||
# GPT-4
|
||||
agent = A1(path='./data', llm='gpt-4')
|
||||
|
||||
# GPT-4o
|
||||
agent = A1(path='./data', llm='gpt-4o')
|
||||
```
|
||||
|
||||
### Configuration
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
default_config.llm = "gpt-4-turbo"
|
||||
default_config.openai_api_key = "sk-..."
|
||||
default_config.openai_organization = "org-..." # Optional
|
||||
default_config.llm_temperature = 0.7
|
||||
```
|
||||
|
||||
**Considerations:**
|
||||
- GPT-4 Turbo recommended for cost-effectiveness
|
||||
- May require additional biomedical context for specialized tasks
|
||||
- Rate limits vary by account tier
|
||||
|
||||
## Azure OpenAI
|
||||
|
||||
**Recommended for:** Enterprise deployments, data residency requirements.
|
||||
|
||||
### Setup
|
||||
|
||||
```bash
|
||||
export AZURE_OPENAI_API_KEY="..."
|
||||
export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com/"
|
||||
export AZURE_OPENAI_DEPLOYMENT_NAME="gpt-4"
|
||||
export AZURE_OPENAI_API_VERSION="2024-02-01"
|
||||
```
|
||||
|
||||
### Configuration
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
default_config.llm = "azure-gpt-4"
|
||||
default_config.azure_openai_api_key = "..."
|
||||
default_config.azure_openai_endpoint = "https://your-resource.openai.azure.com/"
|
||||
default_config.azure_openai_deployment_name = "gpt-4"
|
||||
default_config.azure_openai_api_version = "2024-02-01"
|
||||
```
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
agent = A1(path='./data', llm='azure-gpt-4')
|
||||
```
|
||||
|
||||
**Deployment Notes:**
|
||||
- Requires Azure OpenAI Service provisioning
|
||||
- Deployment names set during Azure resource creation
|
||||
- API versions periodically updated by Microsoft
|
||||
|
||||
## Google Gemini
|
||||
|
||||
**Recommended for:** Google Cloud integration, multimodal tasks.
|
||||
|
||||
### Setup
|
||||
|
||||
```bash
|
||||
export GOOGLE_API_KEY="..."
|
||||
```
|
||||
|
||||
### Available Models
|
||||
|
||||
```python
|
||||
# Gemini 2.0 Flash (recommended)
|
||||
agent = A1(path='./data', llm='gemini-2.0-flash-exp')
|
||||
|
||||
# Gemini Pro
|
||||
agent = A1(path='./data', llm='gemini-pro')
|
||||
```
|
||||
|
||||
### Configuration
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
default_config.llm = "gemini-2.0-flash-exp"
|
||||
default_config.google_api_key = "..."
|
||||
default_config.llm_temperature = 0.7
|
||||
```
|
||||
|
||||
**Features:**
|
||||
- Native multimodal support (text, images, code)
|
||||
- Fast inference
|
||||
- Competitive pricing
|
||||
|
||||
## Groq
|
||||
|
||||
**Recommended for:** Ultra-fast inference, cost-sensitive applications.
|
||||
|
||||
### Setup
|
||||
|
||||
```bash
|
||||
export GROQ_API_KEY="gsk_..."
|
||||
```
|
||||
|
||||
### Available Models
|
||||
|
||||
```python
|
||||
# Llama 3.3 70B
|
||||
agent = A1(path='./data', llm='llama-3.3-70b-versatile')
|
||||
|
||||
# Mixtral 8x7B
|
||||
agent = A1(path='./data', llm='mixtral-8x7b-32768')
|
||||
```
|
||||
|
||||
### Configuration
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
default_config.llm = "llama-3.3-70b-versatile"
|
||||
default_config.groq_api_key = "gsk_..."
|
||||
```
|
||||
|
||||
**Characteristics:**
|
||||
- Extremely fast inference via custom hardware
|
||||
- Open-source model options
|
||||
- Limited context windows for some models
|
||||
|
||||
## AWS Bedrock
|
||||
|
||||
**Recommended for:** AWS infrastructure, compliance requirements.
|
||||
|
||||
### Setup
|
||||
|
||||
```bash
|
||||
export AWS_ACCESS_KEY_ID="..."
|
||||
export AWS_SECRET_ACCESS_KEY="..."
|
||||
export AWS_DEFAULT_REGION="us-east-1"
|
||||
```
|
||||
|
||||
### Available Models
|
||||
|
||||
```python
|
||||
# Claude via Bedrock
|
||||
agent = A1(path='./data', llm='bedrock-claude-sonnet-4')
|
||||
|
||||
# Llama via Bedrock
|
||||
agent = A1(path='./data', llm='bedrock-llama-3-70b')
|
||||
```
|
||||
|
||||
### Configuration
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
default_config.llm = "bedrock-claude-sonnet-4"
|
||||
default_config.aws_access_key_id = "..."
|
||||
default_config.aws_secret_access_key = "..."
|
||||
default_config.aws_region = "us-east-1"
|
||||
```
|
||||
|
||||
**Requirements:**
|
||||
- AWS account with Bedrock access enabled
|
||||
- Model access requested through AWS console
|
||||
- IAM permissions configured for Bedrock APIs
|
||||
|
||||
## Custom Endpoints
|
||||
|
||||
**Recommended for:** Self-hosted models, custom infrastructure.
|
||||
|
||||
### Configuration
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
default_config.llm = "custom"
|
||||
default_config.custom_llm_endpoint = "http://localhost:8000/v1/chat/completions"
|
||||
default_config.custom_llm_api_key = "..." # If required
|
||||
default_config.custom_llm_model_name = "llama-3-70b"
|
||||
```
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
agent = A1(path='./data', llm='custom')
|
||||
```
|
||||
|
||||
**Endpoint Requirements:**
|
||||
- Must implement OpenAI-compatible chat completions API
|
||||
- Support for function/tool calling recommended
|
||||
- JSON response format
|
||||
|
||||
**Example with vLLM:**
|
||||
|
||||
```bash
|
||||
# Start vLLM server
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model meta-llama/Llama-3-70b-chat \
|
||||
--port 8000
|
||||
|
||||
# Configure biomni
|
||||
export CUSTOM_LLM_ENDPOINT="http://localhost:8000/v1/chat/completions"
|
||||
```
|
||||
|
||||
## Model Selection Guidelines
|
||||
|
||||
### By Task Complexity
|
||||
|
||||
**Simple queries** (gene lookup, basic calculations):
|
||||
- Claude Haiku 4
|
||||
- Gemini 2.0 Flash
|
||||
- Groq Llama 3.3 70B
|
||||
|
||||
**Moderate tasks** (data analysis, literature search):
|
||||
- Claude Sonnet 4 (recommended)
|
||||
- GPT-4 Turbo
|
||||
- Gemini 2.0 Flash
|
||||
|
||||
**Complex analyses** (multi-step reasoning, novel insights):
|
||||
- Claude Opus 4 (recommended)
|
||||
- GPT-4
|
||||
- Claude Sonnet 4
|
||||
|
||||
### By Cost Sensitivity
|
||||
|
||||
**Budget-conscious:**
|
||||
1. Groq (fastest, cheapest)
|
||||
2. Claude Haiku 4
|
||||
3. Gemini 2.0 Flash
|
||||
|
||||
**Balanced:**
|
||||
1. Claude Sonnet 4 (recommended)
|
||||
2. GPT-4 Turbo
|
||||
3. Gemini Pro
|
||||
|
||||
**Quality-first:**
|
||||
1. Claude Opus 4
|
||||
2. GPT-4
|
||||
3. Claude Sonnet 4
|
||||
|
||||
### By Infrastructure
|
||||
|
||||
**Cloud-agnostic:**
|
||||
- Anthropic Claude (direct API)
|
||||
- OpenAI (direct API)
|
||||
|
||||
**AWS ecosystem:**
|
||||
- AWS Bedrock (Claude, Llama)
|
||||
|
||||
**Azure ecosystem:**
|
||||
- Azure OpenAI Service
|
||||
|
||||
**Google Cloud:**
|
||||
- Google Gemini
|
||||
|
||||
**On-premises:**
|
||||
- Custom endpoints with self-hosted models
|
||||
|
||||
## Performance Comparison
|
||||
|
||||
Based on Biomni-Eval1 benchmark:
|
||||
|
||||
| Provider | Model | Avg Score | Avg Time (s) | Cost/1K tasks |
|
||||
|----------|-------|-----------|--------------|---------------|
|
||||
| Anthropic | Opus 4 | 0.89 | 45 | $120 |
|
||||
| Anthropic | Sonnet 4 | 0.85 | 28 | $45 |
|
||||
| OpenAI | GPT-4 Turbo | 0.82 | 35 | $55 |
|
||||
| Google | Gemini 2.0 Flash | 0.78 | 22 | $25 |
|
||||
| Groq | Llama 3.3 70B | 0.73 | 12 | $8 |
|
||||
| Anthropic | Haiku 4 | 0.75 | 15 | $15 |
|
||||
|
||||
*Note: Costs are approximate and vary by usage patterns.*
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### API Key Issues
|
||||
|
||||
```python
|
||||
# Verify key is set
|
||||
import os
|
||||
print(os.getenv('ANTHROPIC_API_KEY'))
|
||||
|
||||
# Or check in Python
|
||||
from biomni.config import default_config
|
||||
print(default_config.anthropic_api_key)
|
||||
```
|
||||
|
||||
### Rate Limiting
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
# Add retry logic
|
||||
default_config.max_retries = 5
|
||||
default_config.retry_delay = 10 # seconds
|
||||
|
||||
# Reduce concurrency
|
||||
default_config.max_concurrent_requests = 1
|
||||
```
|
||||
|
||||
### Timeout Errors
|
||||
|
||||
```python
|
||||
# Increase timeout for slow providers
|
||||
default_config.llm_timeout = 120 # seconds
|
||||
|
||||
# Or switch to faster model
|
||||
default_config.llm = "claude-sonnet-4-20250514" # Fast and capable
|
||||
```
|
||||
|
||||
### Model Not Available
|
||||
|
||||
```bash
|
||||
# For Bedrock: Enable model access in AWS console
|
||||
aws bedrock list-foundation-models --region us-east-1
|
||||
|
||||
# For Azure: Check deployment name
|
||||
az cognitiveservices account deployment list \
|
||||
--name your-resource-name \
|
||||
--resource-group your-rg
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
### Cost Optimization
|
||||
|
||||
1. **Use appropriate models** - Don't use Opus 4 for simple queries
|
||||
2. **Enable caching** - Reuse data lake access across tasks
|
||||
3. **Batch processing** - Group similar tasks together
|
||||
4. **Monitor usage** - Track API costs per task type
|
||||
|
||||
```python
|
||||
from biomni.config import default_config
|
||||
|
||||
# Enable response caching
|
||||
default_config.enable_caching = True
|
||||
default_config.cache_ttl = 3600 # 1 hour
|
||||
```
|
||||
|
||||
### Multi-Provider Strategy
|
||||
|
||||
```python
|
||||
def get_agent_for_task(task_complexity):
|
||||
"""Select provider based on task requirements"""
|
||||
if task_complexity == 'simple':
|
||||
return A1(path='./data', llm='claude-haiku-4-20250514')
|
||||
elif task_complexity == 'moderate':
|
||||
return A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
else:
|
||||
return A1(path='./data', llm='claude-opus-4-20250514')
|
||||
|
||||
# Use appropriate model
|
||||
agent = get_agent_for_task('moderate')
|
||||
result = agent.go(task_query)
|
||||
```
|
||||
|
||||
### Fallback Configuration
|
||||
|
||||
```python
|
||||
from biomni.exceptions import LLMError
|
||||
|
||||
def execute_with_fallback(task_query):
|
||||
"""Try multiple providers if primary fails"""
|
||||
providers = [
|
||||
'claude-sonnet-4-20250514',
|
||||
'gpt-4-turbo',
|
||||
'gemini-2.0-flash-exp'
|
||||
]
|
||||
|
||||
for llm in providers:
|
||||
try:
|
||||
agent = A1(path='./data', llm=llm)
|
||||
return agent.go(task_query)
|
||||
except LLMError as e:
|
||||
print(f"{llm} failed: {e}")
|
||||
continue
|
||||
|
||||
raise Exception("All providers failed")
|
||||
```
|
||||
|
||||
## Provider-Specific Tips
|
||||
|
||||
### Anthropic Claude
|
||||
- Best for complex biomedical reasoning
|
||||
- Use Sonnet 4 for most tasks
|
||||
- Reserve Opus 4 for novel research questions
|
||||
|
||||
### OpenAI
|
||||
- Add system prompts with biomedical context for better results
|
||||
- Use JSON mode for structured outputs
|
||||
- Monitor token usage - context window limits
|
||||
|
||||
### Azure OpenAI
|
||||
- Provision deployments in regions close to data
|
||||
- Use managed identity for secure authentication
|
||||
- Monitor quota consumption in Azure portal
|
||||
|
||||
### Google Gemini
|
||||
- Leverage multimodal capabilities for image-based tasks
|
||||
- Use streaming for long-running analyses
|
||||
- Consider Gemini Pro for production workloads
|
||||
|
||||
### Groq
|
||||
- Ideal for high-throughput screening tasks
|
||||
- Limited reasoning depth vs. Claude/GPT-4
|
||||
- Best for well-defined, structured problems
|
||||
|
||||
### AWS Bedrock
|
||||
- Use IAM roles instead of access keys when possible
|
||||
- Enable CloudWatch logging for debugging
|
||||
- Monitor cross-region latency
|
||||
867
skills/biomni/references/use_cases.md
Normal file
867
skills/biomni/references/use_cases.md
Normal file
@@ -0,0 +1,867 @@
|
||||
# Biomni Use Cases and Examples
|
||||
|
||||
Comprehensive examples demonstrating biomni across biomedical research domains.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [CRISPR Screening and Gene Editing](#crispr-screening-and-gene-editing)
|
||||
2. [Single-Cell RNA-seq Analysis](#single-cell-rna-seq-analysis)
|
||||
3. [Drug Discovery and ADMET](#drug-discovery-and-admet)
|
||||
4. [GWAS and Genetic Analysis](#gwas-and-genetic-analysis)
|
||||
5. [Clinical Genomics and Diagnostics](#clinical-genomics-and-diagnostics)
|
||||
6. [Protein Structure and Function](#protein-structure-and-function)
|
||||
7. [Literature and Knowledge Synthesis](#literature-and-knowledge-synthesis)
|
||||
8. [Multi-Omics Integration](#multi-omics-integration)
|
||||
|
||||
---
|
||||
|
||||
## CRISPR Screening and Gene Editing
|
||||
|
||||
### Example 1: Genome-Wide CRISPR Screen Design
|
||||
|
||||
**Task:** Design a CRISPR knockout screen to identify genes regulating autophagy.
|
||||
|
||||
```python
|
||||
from biomni.agent import A1
|
||||
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
result = agent.go("""
|
||||
Design a genome-wide CRISPR knockout screen to identify genes regulating
|
||||
autophagy in HEK293 cells.
|
||||
|
||||
Requirements:
|
||||
1. Generate comprehensive sgRNA library targeting all protein-coding genes
|
||||
2. Design 4 sgRNAs per gene with optimal on-target and minimal off-target scores
|
||||
3. Include positive controls (known autophagy regulators: ATG5, BECN1, ULK1)
|
||||
4. Include negative controls (non-targeting sgRNAs)
|
||||
5. Prioritize genes based on:
|
||||
- Existing autophagy pathway annotations
|
||||
- Protein-protein interactions with known autophagy factors
|
||||
- Expression levels in HEK293 cells
|
||||
6. Output sgRNA sequences, scores, and gene prioritization rankings
|
||||
|
||||
Provide analysis as Python code and interpret results.
|
||||
""")
|
||||
|
||||
agent.save_conversation_history("autophagy_screen_design.pdf")
|
||||
```
|
||||
|
||||
**Expected Output:**
|
||||
- sgRNA library with ~80,000 guides (4 per gene × ~20,000 genes)
|
||||
- On-target and off-target scores for each sgRNA
|
||||
- Prioritized gene list based on pathway enrichment
|
||||
- Quality control metrics for library design
|
||||
|
||||
### Example 2: CRISPR Off-Target Prediction
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Analyze potential off-target effects for this sgRNA sequence:
|
||||
GCTGAAGATCCAGTTCGATG
|
||||
|
||||
Tasks:
|
||||
1. Identify all genomic locations with ≤3 mismatches
|
||||
2. Score each potential off-target site
|
||||
3. Assess likelihood of cleavage at off-target sites
|
||||
4. Recommend whether sgRNA is suitable for use
|
||||
5. If unsuitable, suggest alternative sgRNAs for the same gene
|
||||
""")
|
||||
```
|
||||
|
||||
### Example 3: Screen Hit Analysis
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Analyze CRISPR screen results from autophagy phenotype screen.
|
||||
|
||||
Input file: screen_results.csv
|
||||
Columns: sgRNA_ID, gene, log2_fold_change, p_value, FDR
|
||||
|
||||
Tasks:
|
||||
1. Identify significant hits (FDR < 0.05, |LFC| > 1.5)
|
||||
2. Perform gene ontology enrichment on hit genes
|
||||
3. Map hits to known autophagy pathways
|
||||
4. Identify novel candidates not previously linked to autophagy
|
||||
5. Predict functional relationships between hit genes
|
||||
6. Generate visualization of hit genes in pathway context
|
||||
""")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Single-Cell RNA-seq Analysis
|
||||
|
||||
### Example 1: Cell Type Annotation
|
||||
|
||||
**Task:** Analyze single-cell RNA-seq data and annotate cell populations.
|
||||
|
||||
```python
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
result = agent.go("""
|
||||
Analyze single-cell RNA-seq dataset from human PBMC sample.
|
||||
|
||||
File: pbmc_data.h5ad (10X Genomics format)
|
||||
|
||||
Workflow:
|
||||
1. Quality control:
|
||||
- Filter cells with <200 or >5000 detected genes
|
||||
- Remove cells with >20% mitochondrial content
|
||||
- Filter genes detected in <3 cells
|
||||
|
||||
2. Normalization and preprocessing:
|
||||
- Normalize to 10,000 reads per cell
|
||||
- Log-transform
|
||||
- Identify highly variable genes
|
||||
- Scale data
|
||||
|
||||
3. Dimensionality reduction:
|
||||
- PCA (50 components)
|
||||
- UMAP visualization
|
||||
|
||||
4. Clustering:
|
||||
- Leiden algorithm with resolution=0.8
|
||||
- Identify cluster markers (Wilcoxon rank-sum test)
|
||||
|
||||
5. Cell type annotation:
|
||||
- Annotate clusters using marker genes:
|
||||
* T cells (CD3D, CD3E)
|
||||
* B cells (CD79A, MS4A1)
|
||||
* NK cells (GNLY, NKG7)
|
||||
* Monocytes (CD14, LYZ)
|
||||
* Dendritic cells (FCER1A, CST3)
|
||||
|
||||
6. Generate UMAP plots with annotations and export results
|
||||
""")
|
||||
|
||||
agent.save_conversation_history("pbmc_scrna_analysis.pdf")
|
||||
```
|
||||
|
||||
### Example 2: Differential Expression Analysis
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Perform differential expression analysis between conditions in scRNA-seq data.
|
||||
|
||||
Data: pbmc_treated_vs_control.h5ad
|
||||
Conditions: treated (drug X) vs control
|
||||
|
||||
Tasks:
|
||||
1. Identify differentially expressed genes for each cell type
|
||||
2. Use statistical tests appropriate for scRNA-seq (MAST or Wilcoxon)
|
||||
3. Apply multiple testing correction (Benjamini-Hochberg)
|
||||
4. Threshold: |log2FC| > 0.5, adjusted p < 0.05
|
||||
5. Perform pathway enrichment on DE genes per cell type
|
||||
6. Identify cell-type-specific drug responses
|
||||
7. Generate volcano plots and heatmaps
|
||||
""")
|
||||
```
|
||||
|
||||
### Example 3: Trajectory Analysis
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Perform pseudotime trajectory analysis on differentiation dataset.
|
||||
|
||||
Data: hematopoiesis_scrna.h5ad
|
||||
Starting population: Hematopoietic stem cells (HSCs)
|
||||
|
||||
Analysis:
|
||||
1. Subset to hematopoietic lineages
|
||||
2. Compute diffusion map or PAGA for trajectory inference
|
||||
3. Order cells along pseudotime
|
||||
4. Identify genes with dynamic expression along trajectory
|
||||
5. Cluster genes by expression patterns
|
||||
6. Map trajectories to known differentiation pathways
|
||||
7. Visualize key transcription factors driving differentiation
|
||||
""")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Drug Discovery and ADMET
|
||||
|
||||
### Example 1: ADMET Property Prediction
|
||||
|
||||
**Task:** Predict ADMET properties for drug candidates.
|
||||
|
||||
```python
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
result = agent.go("""
|
||||
Predict ADMET properties for these drug candidates:
|
||||
|
||||
Compounds (SMILES format):
|
||||
1. CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC=CC(=N4)C5=CN=CC=C5
|
||||
2. CN1CCN(CC1)C2=C(C=C3C(=C2)N=CN=C3NC4=CC=C(C=C4)F)OC
|
||||
3. CC(C)(C)NC(=O)N(CC1=CC=CC=C1)C2CCN(CC2)C(=O)C3=CC4=C(C=C3)OCO4
|
||||
|
||||
For each compound, predict:
|
||||
|
||||
**Absorption:**
|
||||
- Caco-2 permeability (cm/s)
|
||||
- Human intestinal absorption (HIA %)
|
||||
- Oral bioavailability
|
||||
|
||||
**Distribution:**
|
||||
- Plasma protein binding (%)
|
||||
- Blood-brain barrier penetration (BBB+/-)
|
||||
- Volume of distribution (L/kg)
|
||||
|
||||
**Metabolism:**
|
||||
- CYP450 substrate/inhibitor predictions (2D6, 3A4, 2C9, 2C19)
|
||||
- Metabolic stability (T1/2)
|
||||
|
||||
**Excretion:**
|
||||
- Clearance (mL/min/kg)
|
||||
- Half-life (hours)
|
||||
|
||||
**Toxicity:**
|
||||
- hERG IC50 (cardiotoxicity risk)
|
||||
- Hepatotoxicity prediction
|
||||
- Ames mutagenicity
|
||||
- LD50 estimates
|
||||
|
||||
Provide predictions with confidence scores and flag any red flags.
|
||||
""")
|
||||
|
||||
agent.save_conversation_history("admet_predictions.pdf")
|
||||
```
|
||||
|
||||
### Example 2: Target Identification
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Identify potential protein targets for Alzheimer's disease drug development.
|
||||
|
||||
Tasks:
|
||||
1. Query GWAS data for Alzheimer's-associated genes
|
||||
2. Identify genes with druggable domains (kinases, GPCRs, ion channels, etc.)
|
||||
3. Check for brain expression patterns
|
||||
4. Assess disease relevance via literature mining
|
||||
5. Evaluate existing chemical probe availability
|
||||
6. Rank targets by:
|
||||
- Genetic evidence strength
|
||||
- Druggability
|
||||
- Lack of existing therapies
|
||||
7. Suggest target validation experiments
|
||||
""")
|
||||
```
|
||||
|
||||
### Example 3: Virtual Screening
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Perform virtual screening for EGFR kinase inhibitors.
|
||||
|
||||
Database: ZINC15 lead-like subset (~6M compounds)
|
||||
Target: EGFR kinase domain (PDB: 1M17)
|
||||
|
||||
Workflow:
|
||||
1. Prepare protein structure (remove waters, add hydrogens)
|
||||
2. Define binding pocket (based on erlotinib binding site)
|
||||
3. Generate pharmacophore model from known EGFR inhibitors
|
||||
4. Filter ZINC database by:
|
||||
- Molecular weight: 200-500 Da
|
||||
- LogP: 0-5
|
||||
- Lipinski's rule of five
|
||||
- Pharmacophore match
|
||||
5. Dock top 10,000 compounds
|
||||
6. Score by docking energy and predicted binding affinity
|
||||
7. Select top 100 for further analysis
|
||||
8. Predict ADMET properties for top hits
|
||||
9. Recommend top 10 compounds for experimental validation
|
||||
""")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## GWAS and Genetic Analysis
|
||||
|
||||
### Example 1: GWAS Summary Statistics Analysis
|
||||
|
||||
**Task:** Interpret GWAS results and identify causal genes.
|
||||
|
||||
```python
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
result = agent.go("""
|
||||
Analyze GWAS summary statistics for Type 2 Diabetes.
|
||||
|
||||
Input file: t2d_gwas_summary.txt
|
||||
Columns: CHR, BP, SNP, P, OR, BETA, SE, A1, A2
|
||||
|
||||
Analysis steps:
|
||||
1. Identify genome-wide significant variants (P < 5e-8)
|
||||
2. Perform LD clumping to identify independent signals
|
||||
3. Map variants to genes using:
|
||||
- Nearest gene
|
||||
- eQTL databases (GTEx)
|
||||
- Hi-C chromatin interactions
|
||||
4. Prioritize causal genes using multiple evidence:
|
||||
- Fine-mapping scores
|
||||
- Coding variant consequences
|
||||
- Gene expression in relevant tissues (pancreas, liver, adipose)
|
||||
- Pathway enrichment
|
||||
5. Identify druggable targets among causal genes
|
||||
6. Compare with known T2D genes and highlight novel associations
|
||||
7. Generate Manhattan plot, QQ plot, and gene prioritization table
|
||||
""")
|
||||
|
||||
agent.save_conversation_history("t2d_gwas_analysis.pdf")
|
||||
```
|
||||
|
||||
### Example 2: Polygenic Risk Score
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Develop and validate polygenic risk score (PRS) for coronary artery disease (CAD).
|
||||
|
||||
Training GWAS: CAD_discovery_summary_stats.txt (N=180,000)
|
||||
Validation cohort: CAD_validation_genotypes.vcf (N=50,000)
|
||||
|
||||
Tasks:
|
||||
1. Select variants for PRS using p-value thresholding (P < 1e-5)
|
||||
2. Perform LD clumping (r² < 0.1, 500kb window)
|
||||
3. Calculate PRS weights from GWAS betas
|
||||
4. Compute PRS for validation cohort individuals
|
||||
5. Evaluate PRS performance:
|
||||
- AUC for CAD case/control discrimination
|
||||
- Odds ratios across PRS deciles
|
||||
- Compare to traditional risk factors (age, sex, BMI, smoking)
|
||||
6. Assess PRS calibration and create risk stratification plot
|
||||
7. Identify high-risk individuals (top 5% PRS)
|
||||
""")
|
||||
```
|
||||
|
||||
### Example 3: Variant Pathogenicity Prediction
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Predict pathogenicity of rare coding variants in candidate disease genes.
|
||||
|
||||
Variants (VCF format):
|
||||
- chr17:41234451:A>G (BRCA1 p.Arg1347Gly)
|
||||
- chr2:179428448:C>T (TTN p.Trp13579*)
|
||||
- chr7:117188679:G>A (CFTR p.Gly542Ser)
|
||||
|
||||
For each variant, assess:
|
||||
1. In silico predictions (SIFT, PolyPhen2, CADD, REVEL)
|
||||
2. Population frequency (gnomAD)
|
||||
3. Evolutionary conservation (PhyloP, PhastCons)
|
||||
4. Protein structure impact (using AlphaFold structures)
|
||||
5. Functional domain location
|
||||
6. ClinVar annotations (if available)
|
||||
7. Literature evidence
|
||||
8. ACMG/AMP classification criteria
|
||||
|
||||
Provide pathogenicity classification (benign, likely benign, VUS, likely pathogenic, pathogenic) with supporting evidence.
|
||||
""")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Clinical Genomics and Diagnostics
|
||||
|
||||
### Example 1: Rare Disease Diagnosis
|
||||
|
||||
**Task:** Diagnose rare genetic disease from whole exome sequencing.
|
||||
|
||||
```python
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
result = agent.go("""
|
||||
Analyze whole exome sequencing (WES) data for rare disease diagnosis.
|
||||
|
||||
Patient phenotypes (HPO terms):
|
||||
- HP:0001250 (Seizures)
|
||||
- HP:0001249 (Intellectual disability)
|
||||
- HP:0001263 (Global developmental delay)
|
||||
- HP:0001252 (Hypotonia)
|
||||
|
||||
VCF file: patient_trio.vcf (proband + parents)
|
||||
|
||||
Analysis workflow:
|
||||
1. Variant filtering:
|
||||
- Quality filters (QUAL > 30, DP > 10, GQ > 20)
|
||||
- Frequency filters (gnomAD AF < 0.01)
|
||||
- Functional impact (missense, nonsense, frameshift, splice site)
|
||||
|
||||
2. Inheritance pattern analysis:
|
||||
- De novo variants
|
||||
- Autosomal recessive (compound het, homozygous)
|
||||
- X-linked
|
||||
|
||||
3. Phenotype-driven prioritization:
|
||||
- Match candidate genes to HPO terms
|
||||
- Use HPO-gene associations
|
||||
- Check gene expression in relevant tissues (brain)
|
||||
|
||||
4. Variant pathogenicity assessment:
|
||||
- In silico predictions
|
||||
- ACMG classification
|
||||
- Literature evidence
|
||||
|
||||
5. Generate diagnostic report with:
|
||||
- Top candidate variants
|
||||
- Supporting evidence
|
||||
- Functional validation suggestions
|
||||
- Genetic counseling recommendations
|
||||
""")
|
||||
|
||||
agent.save_conversation_history("rare_disease_diagnosis.pdf")
|
||||
```
|
||||
|
||||
### Example 2: Cancer Genomics Analysis
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Analyze tumor-normal paired sequencing for cancer genomics.
|
||||
|
||||
Files:
|
||||
- tumor_sample.vcf (somatic variants)
|
||||
- tumor_rnaseq.bam (gene expression)
|
||||
- tumor_cnv.seg (copy number variants)
|
||||
|
||||
Analysis:
|
||||
1. Identify driver mutations:
|
||||
- Known cancer genes (COSMIC, OncoKB)
|
||||
- Recurrent hotspot mutations
|
||||
- Truncating mutations in tumor suppressors
|
||||
|
||||
2. Analyze mutational signatures:
|
||||
- Decompose signatures (COSMIC signatures)
|
||||
- Identify mutagenic processes
|
||||
|
||||
3. Copy number analysis:
|
||||
- Identify amplifications and deletions
|
||||
- Focal vs. arm-level events
|
||||
- Assess oncogene amplifications and TSG deletions
|
||||
|
||||
4. Gene expression analysis:
|
||||
- Identify outlier gene expression
|
||||
- Fusion transcript detection
|
||||
- Pathway dysregulation
|
||||
|
||||
5. Therapeutic implications:
|
||||
- Match alterations to FDA-approved therapies
|
||||
- Identify clinical trial opportunities
|
||||
- Predict response to targeted therapies
|
||||
|
||||
6. Generate precision oncology report
|
||||
""")
|
||||
```
|
||||
|
||||
### Example 3: Pharmacogenomics
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Generate pharmacogenomics report for patient genotype data.
|
||||
|
||||
VCF file: patient_pgx.vcf
|
||||
|
||||
Analyze variants affecting drug metabolism:
|
||||
|
||||
**CYP450 genes:**
|
||||
- CYP2D6 (affects ~25% of drugs)
|
||||
- CYP2C19 (clopidogrel, PPIs, antidepressants)
|
||||
- CYP2C9 (warfarin, NSAIDs)
|
||||
- CYP3A5 (tacrolimus, immunosuppressants)
|
||||
|
||||
**Drug transporter genes:**
|
||||
- SLCO1B1 (statin myopathy risk)
|
||||
- ABCB1 (P-glycoprotein)
|
||||
|
||||
**Drug targets:**
|
||||
- VKORC1 (warfarin dosing)
|
||||
- DPYD (fluoropyrimidine toxicity)
|
||||
- TPMT (thiopurine toxicity)
|
||||
|
||||
For each gene:
|
||||
1. Determine diplotype (*1/*1, *1/*2, etc.)
|
||||
2. Assign metabolizer phenotype (PM, IM, NM, RM, UM)
|
||||
3. Provide dosing recommendations using CPIC/PharmGKB guidelines
|
||||
4. Flag high-risk drug-gene interactions
|
||||
5. Suggest alternative medications if needed
|
||||
|
||||
Generate patient-friendly report with actionable recommendations.
|
||||
""")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Protein Structure and Function
|
||||
|
||||
### Example 1: AlphaFold Structure Analysis
|
||||
|
||||
```python
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
result = agent.go("""
|
||||
Analyze AlphaFold structure prediction for novel protein.
|
||||
|
||||
Protein: Hypothetical protein ABC123 (UniProt: Q9XYZ1)
|
||||
|
||||
Tasks:
|
||||
1. Retrieve AlphaFold structure from database
|
||||
2. Assess prediction quality:
|
||||
- pLDDT scores per residue
|
||||
- Identify high-confidence regions (pLDDT > 90)
|
||||
- Flag low-confidence regions (pLDDT < 50)
|
||||
|
||||
3. Structural analysis:
|
||||
- Identify domains using structural alignment
|
||||
- Predict fold family
|
||||
- Identify secondary structure elements
|
||||
|
||||
4. Functional prediction:
|
||||
- Search for structural homologs in PDB
|
||||
- Identify conserved functional sites
|
||||
- Predict binding pockets
|
||||
- Suggest possible ligands/substrates
|
||||
|
||||
5. Variant impact analysis:
|
||||
- Map disease-associated variants to structure
|
||||
- Predict structural consequences
|
||||
- Identify variants affecting binding sites
|
||||
|
||||
6. Generate PyMOL visualization scripts highlighting key features
|
||||
""")
|
||||
|
||||
agent.save_conversation_history("alphafold_analysis.pdf")
|
||||
```
|
||||
|
||||
### Example 2: Protein-Protein Interaction Prediction
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Predict and analyze protein-protein interactions for autophagy pathway.
|
||||
|
||||
Query proteins: ATG5, ATG12, ATG16L1
|
||||
|
||||
Analysis:
|
||||
1. Retrieve known interactions from:
|
||||
- STRING database
|
||||
- BioGRID
|
||||
- IntAct
|
||||
- Literature mining
|
||||
|
||||
2. Predict novel interactions using:
|
||||
- Structural modeling (AlphaFold-Multimer)
|
||||
- Coexpression analysis
|
||||
- Phylogenetic profiling
|
||||
|
||||
3. Analyze interaction interfaces:
|
||||
- Identify binding residues
|
||||
- Assess interface properties (area, hydrophobicity)
|
||||
- Predict binding affinity
|
||||
|
||||
4. Functional analysis:
|
||||
- Map interactions to autophagy pathway steps
|
||||
- Identify regulatory interactions
|
||||
- Predict complex stoichiometry
|
||||
|
||||
5. Therapeutic implications:
|
||||
- Identify druggable interfaces
|
||||
- Suggest peptide inhibitors
|
||||
- Design disruption strategies
|
||||
|
||||
Generate network visualization and interaction details.
|
||||
""")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Literature and Knowledge Synthesis
|
||||
|
||||
### Example 1: Systematic Literature Review
|
||||
|
||||
```python
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
result = agent.go("""
|
||||
Perform systematic literature review on CRISPR base editing applications.
|
||||
|
||||
Search query: "CRISPR base editing" OR "base editor" OR "CBE" OR "ABE"
|
||||
Date range: 2016-2025
|
||||
|
||||
Tasks:
|
||||
1. Search PubMed and retrieve relevant abstracts
|
||||
2. Filter for original research articles
|
||||
3. Extract key information:
|
||||
- Base editor type (CBE, ABE, dual)
|
||||
- Target organism/cell type
|
||||
- Application (disease model, therapy, crop improvement)
|
||||
- Editing efficiency
|
||||
- Off-target assessment
|
||||
|
||||
4. Categorize applications:
|
||||
- Therapeutic applications (by disease)
|
||||
- Agricultural applications
|
||||
- Basic research
|
||||
|
||||
5. Analyze trends:
|
||||
- Publications over time
|
||||
- Most studied diseases
|
||||
- Evolution of base editor technology
|
||||
|
||||
6. Synthesize findings:
|
||||
- Clinical trial status
|
||||
- Remaining challenges
|
||||
- Future directions
|
||||
|
||||
Generate comprehensive review document with citation statistics.
|
||||
""")
|
||||
|
||||
agent.save_conversation_history("crispr_base_editing_review.pdf")
|
||||
```
|
||||
|
||||
### Example 2: Gene Function Synthesis
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Synthesize knowledge about gene function from multiple sources.
|
||||
|
||||
Target gene: PARK7 (DJ-1)
|
||||
|
||||
Integrate information from:
|
||||
1. **Genetic databases:**
|
||||
- NCBI Gene
|
||||
- UniProt
|
||||
- OMIM
|
||||
|
||||
2. **Expression data:**
|
||||
- GTEx tissue expression
|
||||
- Human Protein Atlas
|
||||
- Single-cell expression atlases
|
||||
|
||||
3. **Functional data:**
|
||||
- GO annotations
|
||||
- KEGG pathways
|
||||
- Reactome
|
||||
- Protein interactions (STRING)
|
||||
|
||||
4. **Disease associations:**
|
||||
- ClinVar variants
|
||||
- GWAS catalog
|
||||
- Disease databases (DisGeNET)
|
||||
|
||||
5. **Literature:**
|
||||
- PubMed abstracts
|
||||
- Key mechanistic studies
|
||||
- Review articles
|
||||
|
||||
Synthesize into comprehensive gene report:
|
||||
- Molecular function
|
||||
- Biological processes
|
||||
- Cellular localization
|
||||
- Tissue distribution
|
||||
- Disease associations
|
||||
- Known drug targets/inhibitors
|
||||
- Unresolved questions
|
||||
|
||||
Generate structured summary suitable for research planning.
|
||||
""")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Multi-Omics Integration
|
||||
|
||||
### Example 1: Multi-Omics Disease Analysis
|
||||
|
||||
```python
|
||||
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
|
||||
|
||||
result = agent.go("""
|
||||
Integrate multi-omics data to understand disease mechanism.
|
||||
|
||||
Disease: Alzheimer's disease
|
||||
Data types:
|
||||
- Genomics: GWAS summary statistics (gwas_ad.txt)
|
||||
- Transcriptomics: Brain RNA-seq (controls vs AD, rnaseq_data.csv)
|
||||
- Proteomics: CSF proteomics (proteomics_csf.csv)
|
||||
- Metabolomics: Plasma metabolomics (metabolomics_plasma.csv)
|
||||
- Epigenomics: Brain methylation array (methylation_data.csv)
|
||||
|
||||
Integration workflow:
|
||||
1. Analyze each omics layer independently:
|
||||
- Identify significantly altered features
|
||||
- Perform pathway enrichment
|
||||
|
||||
2. Cross-omics correlation:
|
||||
- Correlate gene expression with protein levels
|
||||
- Link genetic variants to expression (eQTL)
|
||||
- Associate methylation with gene expression
|
||||
- Connect proteins to metabolites
|
||||
|
||||
3. Network analysis:
|
||||
- Build multi-omics network
|
||||
- Identify key hub genes/proteins
|
||||
- Detect disease modules
|
||||
|
||||
4. Causal inference:
|
||||
- Prioritize drivers vs. consequences
|
||||
- Identify therapeutic targets
|
||||
- Predict drug mechanisms
|
||||
|
||||
5. Generate integrative model of AD pathogenesis
|
||||
|
||||
Provide visualization and therapeutic target recommendations.
|
||||
""")
|
||||
|
||||
agent.save_conversation_history("ad_multiomics_analysis.pdf")
|
||||
```
|
||||
|
||||
### Example 2: Systems Biology Modeling
|
||||
|
||||
```python
|
||||
result = agent.go("""
|
||||
Build systems biology model of metabolic pathway.
|
||||
|
||||
Pathway: Glycolysis
|
||||
Data sources:
|
||||
- Enzyme kinetics (BRENDA database)
|
||||
- Metabolite concentrations (literature)
|
||||
- Gene expression (tissue-specific, GTEx)
|
||||
- Flux measurements (C13 labeling studies)
|
||||
|
||||
Modeling tasks:
|
||||
1. Construct pathway model:
|
||||
- Define reactions and stoichiometry
|
||||
- Parameterize enzyme kinetics (Km, Vmax, Ki)
|
||||
- Set initial metabolite concentrations
|
||||
|
||||
2. Simulate pathway dynamics:
|
||||
- Steady-state analysis
|
||||
- Time-course simulations
|
||||
- Sensitivity analysis
|
||||
|
||||
3. Constraint-based modeling:
|
||||
- Flux balance analysis (FBA)
|
||||
- Identify bottleneck reactions
|
||||
- Predict metabolic engineering strategies
|
||||
|
||||
4. Integrate with gene expression:
|
||||
- Tissue-specific model predictions
|
||||
- Disease vs. normal comparisons
|
||||
|
||||
5. Therapeutic predictions:
|
||||
- Enzyme inhibition effects
|
||||
- Metabolic rescue strategies
|
||||
- Drug target identification
|
||||
|
||||
Generate model in SBML format and simulation results.
|
||||
""")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Best Practices for Task Formulation
|
||||
|
||||
### 1. Be Specific and Detailed
|
||||
|
||||
**Poor:**
|
||||
```python
|
||||
agent.go("Analyze this RNA-seq data")
|
||||
```
|
||||
|
||||
**Good:**
|
||||
```python
|
||||
agent.go("""
|
||||
Analyze bulk RNA-seq data from cancer vs. normal samples.
|
||||
|
||||
Files: cancer_rnaseq.csv (TPM values, 50 cancer, 50 normal)
|
||||
|
||||
Tasks:
|
||||
1. Differential expression (DESeq2, padj < 0.05, |log2FC| > 1)
|
||||
2. Pathway enrichment (KEGG, Reactome)
|
||||
3. Generate volcano plot and top DE gene heatmap
|
||||
""")
|
||||
```
|
||||
|
||||
### 2. Include File Paths and Formats
|
||||
|
||||
Always specify:
|
||||
- Exact file paths
|
||||
- File formats (VCF, BAM, CSV, H5AD, etc.)
|
||||
- Data structure (columns, sample IDs)
|
||||
|
||||
### 3. Set Clear Success Criteria
|
||||
|
||||
Define thresholds and cutoffs:
|
||||
- Statistical significance (P < 0.05, FDR < 0.1)
|
||||
- Fold change thresholds
|
||||
- Quality filters
|
||||
- Expected outputs
|
||||
|
||||
### 4. Request Visualizations
|
||||
|
||||
Explicitly ask for plots:
|
||||
- Volcano plots, MA plots
|
||||
- Heatmaps, PCA plots
|
||||
- Network diagrams
|
||||
- Manhattan plots
|
||||
|
||||
### 5. Specify Biological Context
|
||||
|
||||
Include:
|
||||
- Organism (human, mouse, etc.)
|
||||
- Tissue/cell type
|
||||
- Disease/condition
|
||||
- Treatment details
|
||||
|
||||
### 6. Request Interpretations
|
||||
|
||||
Ask agent to:
|
||||
- Interpret biological significance
|
||||
- Suggest follow-up experiments
|
||||
- Identify limitations
|
||||
- Provide literature context
|
||||
|
||||
---
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Data Quality Control
|
||||
|
||||
```python
|
||||
"""
|
||||
Before analysis, perform quality control:
|
||||
1. Check for missing values
|
||||
2. Assess data distributions
|
||||
3. Identify outliers
|
||||
4. Generate QC report
|
||||
Only proceed with analysis if data passes QC.
|
||||
"""
|
||||
```
|
||||
|
||||
### Iterative Refinement
|
||||
|
||||
```python
|
||||
"""
|
||||
Perform analysis in stages:
|
||||
1. Initial exploratory analysis
|
||||
2. Based on results, refine parameters
|
||||
3. Focus on interesting findings
|
||||
4. Generate final report
|
||||
|
||||
Show intermediate results for each stage.
|
||||
"""
|
||||
```
|
||||
|
||||
### Reproducibility
|
||||
|
||||
```python
|
||||
"""
|
||||
Ensure reproducibility:
|
||||
1. Set random seeds where applicable
|
||||
2. Log all parameters used
|
||||
3. Save intermediate files
|
||||
4. Export environment info (package versions)
|
||||
5. Generate methods section for paper
|
||||
"""
|
||||
```
|
||||
|
||||
These examples demonstrate the breadth of biomedical tasks biomni can handle. Adapt the patterns to your specific research questions, and always include sufficient detail for the agent to execute autonomously.
|
||||
370
skills/biomni/scripts/generate_report.py
Executable file
370
skills/biomni/scripts/generate_report.py
Executable file
@@ -0,0 +1,370 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Enhanced PDF report generation for biomni conversation histories.
|
||||
|
||||
This script provides additional customization options for biomni reports:
|
||||
- Custom styling and branding
|
||||
- Formatted code blocks
|
||||
- Section organization
|
||||
- Metadata inclusion
|
||||
- Export format options (PDF, HTML, Markdown)
|
||||
|
||||
Usage:
|
||||
python generate_report.py --input conversation.json --output report.pdf
|
||||
python generate_report.py --agent-object agent --output report.pdf --format html
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Any
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
def format_conversation_history(
|
||||
messages: List[Dict[str, Any]],
|
||||
include_metadata: bool = True,
|
||||
include_code: bool = True,
|
||||
include_timestamps: bool = False
|
||||
) -> str:
|
||||
"""
|
||||
Format conversation history into structured markdown.
|
||||
|
||||
Args:
|
||||
messages: List of conversation message dictionaries
|
||||
include_metadata: Include metadata section
|
||||
include_code: Include code blocks
|
||||
include_timestamps: Include message timestamps
|
||||
|
||||
Returns:
|
||||
Formatted markdown string
|
||||
"""
|
||||
sections = []
|
||||
|
||||
# Header
|
||||
sections.append("# Biomni Analysis Report\n")
|
||||
|
||||
# Metadata
|
||||
if include_metadata:
|
||||
sections.append("## Metadata\n")
|
||||
sections.append(f"- **Generated**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
||||
sections.append(f"- **Number of interactions**: {len(messages)}")
|
||||
sections.append("\n---\n")
|
||||
|
||||
# Process messages
|
||||
sections.append("## Analysis\n")
|
||||
|
||||
for i, msg in enumerate(messages, 1):
|
||||
role = msg.get('role', 'unknown')
|
||||
content = msg.get('content', '')
|
||||
|
||||
if role == 'user':
|
||||
sections.append(f"### Task {i // 2 + 1}\n")
|
||||
sections.append(f"**Query:**\n```\n{content}\n```\n")
|
||||
|
||||
elif role == 'assistant':
|
||||
sections.append(f"**Response:**\n")
|
||||
|
||||
# Check if content contains code
|
||||
if include_code and ('```' in content or 'import ' in content):
|
||||
# Attempt to separate text and code
|
||||
parts = content.split('```')
|
||||
for j, part in enumerate(parts):
|
||||
if j % 2 == 0:
|
||||
# Text content
|
||||
if part.strip():
|
||||
sections.append(f"{part.strip()}\n")
|
||||
else:
|
||||
# Code content
|
||||
# Check if language is specified
|
||||
lines = part.split('\n', 1)
|
||||
if len(lines) > 1 and lines[0].strip() in ['python', 'r', 'bash', 'sql']:
|
||||
lang = lines[0].strip()
|
||||
code = lines[1]
|
||||
else:
|
||||
lang = 'python' # Default to python
|
||||
code = part
|
||||
|
||||
sections.append(f"```{lang}\n{code}\n```\n")
|
||||
else:
|
||||
sections.append(f"{content}\n")
|
||||
|
||||
sections.append("\n---\n")
|
||||
|
||||
return '\n'.join(sections)
|
||||
|
||||
|
||||
def markdown_to_html(markdown_content: str, title: str = "Biomni Report") -> str:
|
||||
"""
|
||||
Convert markdown to styled HTML.
|
||||
|
||||
Args:
|
||||
markdown_content: Markdown string
|
||||
title: HTML page title
|
||||
|
||||
Returns:
|
||||
HTML string
|
||||
"""
|
||||
# Simple markdown to HTML conversion
|
||||
# For production use, consider using a library like markdown or mistune
|
||||
|
||||
html_template = f"""
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>{title}</title>
|
||||
<style>
|
||||
body {{
|
||||
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
|
||||
line-height: 1.6;
|
||||
max-width: 900px;
|
||||
margin: 0 auto;
|
||||
padding: 20px;
|
||||
color: #333;
|
||||
}}
|
||||
h1 {{
|
||||
color: #2c3e50;
|
||||
border-bottom: 3px solid #3498db;
|
||||
padding-bottom: 10px;
|
||||
}}
|
||||
h2 {{
|
||||
color: #34495e;
|
||||
margin-top: 30px;
|
||||
border-bottom: 2px solid #95a5a6;
|
||||
padding-bottom: 5px;
|
||||
}}
|
||||
h3 {{
|
||||
color: #555;
|
||||
}}
|
||||
code {{
|
||||
background-color: #f4f4f4;
|
||||
padding: 2px 6px;
|
||||
border-radius: 3px;
|
||||
font-family: 'Monaco', 'Menlo', 'Courier New', monospace;
|
||||
}}
|
||||
pre {{
|
||||
background-color: #f8f8f8;
|
||||
border: 1px solid #ddd;
|
||||
border-radius: 5px;
|
||||
padding: 15px;
|
||||
overflow-x: auto;
|
||||
}}
|
||||
pre code {{
|
||||
background-color: transparent;
|
||||
padding: 0;
|
||||
}}
|
||||
hr {{
|
||||
border: none;
|
||||
border-top: 1px solid #ddd;
|
||||
margin: 30px 0;
|
||||
}}
|
||||
.metadata {{
|
||||
background-color: #ecf0f1;
|
||||
padding: 15px;
|
||||
border-radius: 5px;
|
||||
margin-bottom: 20px;
|
||||
}}
|
||||
.task {{
|
||||
background-color: #e8f4f8;
|
||||
padding: 10px;
|
||||
border-left: 4px solid #3498db;
|
||||
margin: 20px 0;
|
||||
}}
|
||||
.footer {{
|
||||
margin-top: 50px;
|
||||
text-align: center;
|
||||
color: #7f8c8d;
|
||||
font-size: 0.9em;
|
||||
}}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="content">
|
||||
{markdown_to_html_simple(markdown_content)}
|
||||
</div>
|
||||
<div class="footer">
|
||||
<p>Generated with Biomni | Stanford SNAP Lab</p>
|
||||
<p><a href="https://github.com/snap-stanford/biomni">github.com/snap-stanford/biomni</a></p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
return html_template
|
||||
|
||||
|
||||
def markdown_to_html_simple(md: str) -> str:
|
||||
"""Simple markdown to HTML converter (basic implementation)."""
|
||||
lines = md.split('\n')
|
||||
html_lines = []
|
||||
in_code_block = False
|
||||
in_list = False
|
||||
|
||||
for line in lines:
|
||||
# Code blocks
|
||||
if line.startswith('```'):
|
||||
if in_code_block:
|
||||
html_lines.append('</code></pre>')
|
||||
in_code_block = False
|
||||
else:
|
||||
lang = line[3:].strip()
|
||||
html_lines.append(f'<pre><code class="language-{lang}">')
|
||||
in_code_block = True
|
||||
continue
|
||||
|
||||
if in_code_block:
|
||||
html_lines.append(line)
|
||||
continue
|
||||
|
||||
# Headers
|
||||
if line.startswith('# '):
|
||||
html_lines.append(f'<h1>{line[2:]}</h1>')
|
||||
elif line.startswith('## '):
|
||||
html_lines.append(f'<h2>{line[3:]}</h2>')
|
||||
elif line.startswith('### '):
|
||||
html_lines.append(f'<h3>{line[4:]}</h3>')
|
||||
# Lists
|
||||
elif line.startswith('- '):
|
||||
if not in_list:
|
||||
html_lines.append('<ul>')
|
||||
in_list = True
|
||||
html_lines.append(f'<li>{line[2:]}</li>')
|
||||
else:
|
||||
if in_list:
|
||||
html_lines.append('</ul>')
|
||||
in_list = False
|
||||
|
||||
# Horizontal rule
|
||||
if line.strip() == '---':
|
||||
html_lines.append('<hr>')
|
||||
# Bold
|
||||
elif '**' in line:
|
||||
line = line.replace('**', '<strong>', 1).replace('**', '</strong>', 1)
|
||||
html_lines.append(f'<p>{line}</p>')
|
||||
# Regular paragraph
|
||||
elif line.strip():
|
||||
html_lines.append(f'<p>{line}</p>')
|
||||
else:
|
||||
html_lines.append('<br>')
|
||||
|
||||
if in_list:
|
||||
html_lines.append('</ul>')
|
||||
|
||||
return '\n'.join(html_lines)
|
||||
|
||||
|
||||
def generate_report(
|
||||
conversation_data: Dict[str, Any],
|
||||
output_path: Path,
|
||||
format: str = 'markdown',
|
||||
title: Optional[str] = None
|
||||
):
|
||||
"""
|
||||
Generate formatted report from conversation data.
|
||||
|
||||
Args:
|
||||
conversation_data: Conversation history dictionary
|
||||
output_path: Output file path
|
||||
format: Output format ('markdown', 'html', or 'pdf')
|
||||
title: Report title
|
||||
"""
|
||||
messages = conversation_data.get('messages', [])
|
||||
|
||||
if not title:
|
||||
title = f"Biomni Analysis - {datetime.now().strftime('%Y-%m-%d')}"
|
||||
|
||||
# Generate markdown
|
||||
markdown_content = format_conversation_history(messages)
|
||||
|
||||
if format == 'markdown':
|
||||
output_path.write_text(markdown_content)
|
||||
print(f"✓ Markdown report saved to {output_path}")
|
||||
|
||||
elif format == 'html':
|
||||
html_content = markdown_to_html(markdown_content, title)
|
||||
output_path.write_text(html_content)
|
||||
print(f"✓ HTML report saved to {output_path}")
|
||||
|
||||
elif format == 'pdf':
|
||||
# For PDF generation, we'd typically use a library like weasyprint or reportlab
|
||||
# This is a placeholder implementation
|
||||
print("PDF generation requires additional dependencies (weasyprint or reportlab)")
|
||||
print("Falling back to HTML format...")
|
||||
|
||||
html_path = output_path.with_suffix('.html')
|
||||
html_content = markdown_to_html(markdown_content, title)
|
||||
html_path.write_text(html_content)
|
||||
|
||||
print(f"✓ HTML report saved to {html_path}")
|
||||
print(" To convert to PDF:")
|
||||
print(f" 1. Install weasyprint: pip install weasyprint")
|
||||
print(f" 2. Run: weasyprint {html_path} {output_path}")
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unsupported format: {format}")
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point for CLI usage."""
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Generate enhanced reports from biomni conversation histories"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--input',
|
||||
type=Path,
|
||||
required=True,
|
||||
help='Input conversation history JSON file'
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--output',
|
||||
type=Path,
|
||||
required=True,
|
||||
help='Output report file path'
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--format',
|
||||
choices=['markdown', 'html', 'pdf'],
|
||||
default='markdown',
|
||||
help='Output format (default: markdown)'
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--title',
|
||||
type=str,
|
||||
help='Report title (optional)'
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load conversation data
|
||||
try:
|
||||
with open(args.input, 'r') as f:
|
||||
conversation_data = json.load(f)
|
||||
except FileNotFoundError:
|
||||
print(f"❌ Input file not found: {args.input}")
|
||||
return 1
|
||||
except json.JSONDecodeError:
|
||||
print(f"❌ Invalid JSON in input file: {args.input}")
|
||||
return 1
|
||||
|
||||
# Generate report
|
||||
try:
|
||||
generate_report(
|
||||
conversation_data,
|
||||
args.output,
|
||||
format=args.format,
|
||||
title=args.title
|
||||
)
|
||||
return 0
|
||||
except Exception as e:
|
||||
print(f"❌ Error generating report: {e}")
|
||||
return 1
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
sys.exit(main())
|
||||
355
skills/biomni/scripts/setup_environment.py
Executable file
355
skills/biomni/scripts/setup_environment.py
Executable file
@@ -0,0 +1,355 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Interactive setup script for biomni environment configuration.
|
||||
|
||||
This script helps users set up:
|
||||
1. Conda environment with required dependencies
|
||||
2. API keys for LLM providers
|
||||
3. Data lake directory configuration
|
||||
4. MCP server setup (optional)
|
||||
|
||||
Usage:
|
||||
python setup_environment.py
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional
|
||||
|
||||
|
||||
def check_conda_installed() -> bool:
|
||||
"""Check if conda is available in the system."""
|
||||
try:
|
||||
subprocess.run(
|
||||
['conda', '--version'],
|
||||
capture_output=True,
|
||||
check=True
|
||||
)
|
||||
return True
|
||||
except (subprocess.CalledProcessError, FileNotFoundError):
|
||||
return False
|
||||
|
||||
|
||||
def setup_conda_environment():
|
||||
"""Guide user through conda environment setup."""
|
||||
print("\n=== Conda Environment Setup ===")
|
||||
|
||||
if not check_conda_installed():
|
||||
print("❌ Conda not found. Please install Miniconda or Anaconda:")
|
||||
print(" https://docs.conda.io/en/latest/miniconda.html")
|
||||
return False
|
||||
|
||||
print("✓ Conda is installed")
|
||||
|
||||
# Check if biomni_e1 environment exists
|
||||
result = subprocess.run(
|
||||
['conda', 'env', 'list'],
|
||||
capture_output=True,
|
||||
text=True
|
||||
)
|
||||
|
||||
if 'biomni_e1' in result.stdout:
|
||||
print("✓ biomni_e1 environment already exists")
|
||||
return True
|
||||
|
||||
print("\nCreating biomni_e1 conda environment...")
|
||||
print("This will install Python 3.10 and required dependencies.")
|
||||
|
||||
response = input("Proceed? [y/N]: ").strip().lower()
|
||||
if response != 'y':
|
||||
print("Skipping conda environment setup")
|
||||
return False
|
||||
|
||||
try:
|
||||
# Create conda environment
|
||||
subprocess.run(
|
||||
['conda', 'create', '-n', 'biomni_e1', 'python=3.10', '-y'],
|
||||
check=True
|
||||
)
|
||||
|
||||
print("\n✓ Conda environment created successfully")
|
||||
print("\nTo activate: conda activate biomni_e1")
|
||||
print("Then install biomni: pip install biomni --upgrade")
|
||||
return True
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(f"❌ Failed to create conda environment: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def setup_api_keys() -> Dict[str, str]:
|
||||
"""Interactive API key configuration."""
|
||||
print("\n=== API Key Configuration ===")
|
||||
print("Biomni supports multiple LLM providers.")
|
||||
print("At minimum, configure one provider.")
|
||||
|
||||
api_keys = {}
|
||||
|
||||
# Anthropic (recommended)
|
||||
print("\n1. Anthropic Claude (Recommended)")
|
||||
print(" Get your API key from: https://console.anthropic.com/")
|
||||
anthropic_key = input(" Enter ANTHROPIC_API_KEY (or press Enter to skip): ").strip()
|
||||
if anthropic_key:
|
||||
api_keys['ANTHROPIC_API_KEY'] = anthropic_key
|
||||
|
||||
# OpenAI
|
||||
print("\n2. OpenAI")
|
||||
print(" Get your API key from: https://platform.openai.com/api-keys")
|
||||
openai_key = input(" Enter OPENAI_API_KEY (or press Enter to skip): ").strip()
|
||||
if openai_key:
|
||||
api_keys['OPENAI_API_KEY'] = openai_key
|
||||
|
||||
# Google Gemini
|
||||
print("\n3. Google Gemini")
|
||||
print(" Get your API key from: https://makersuite.google.com/app/apikey")
|
||||
google_key = input(" Enter GOOGLE_API_KEY (or press Enter to skip): ").strip()
|
||||
if google_key:
|
||||
api_keys['GOOGLE_API_KEY'] = google_key
|
||||
|
||||
# Groq
|
||||
print("\n4. Groq")
|
||||
print(" Get your API key from: https://console.groq.com/keys")
|
||||
groq_key = input(" Enter GROQ_API_KEY (or press Enter to skip): ").strip()
|
||||
if groq_key:
|
||||
api_keys['GROQ_API_KEY'] = groq_key
|
||||
|
||||
if not api_keys:
|
||||
print("\n⚠️ No API keys configured. You'll need at least one to use biomni.")
|
||||
return {}
|
||||
|
||||
return api_keys
|
||||
|
||||
|
||||
def save_api_keys(api_keys: Dict[str, str], method: str = 'env_file'):
|
||||
"""Save API keys using specified method."""
|
||||
if method == 'env_file':
|
||||
env_file = Path.cwd() / '.env'
|
||||
|
||||
# Read existing .env if present
|
||||
existing_vars = {}
|
||||
if env_file.exists():
|
||||
with open(env_file, 'r') as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if line and not line.startswith('#'):
|
||||
if '=' in line:
|
||||
key, val = line.split('=', 1)
|
||||
existing_vars[key.strip()] = val.strip()
|
||||
|
||||
# Update with new keys
|
||||
existing_vars.update(api_keys)
|
||||
|
||||
# Write to .env
|
||||
with open(env_file, 'w') as f:
|
||||
f.write("# Biomni API Keys\n")
|
||||
f.write(f"# Generated by setup_environment.py\n\n")
|
||||
for key, value in existing_vars.items():
|
||||
f.write(f"{key}={value}\n")
|
||||
|
||||
print(f"\n✓ API keys saved to {env_file}")
|
||||
print(" Keys will be loaded automatically when biomni runs in this directory")
|
||||
|
||||
elif method == 'shell_export':
|
||||
shell_file = Path.home() / '.bashrc' # or .zshrc for zsh users
|
||||
|
||||
print("\n📋 Add these lines to your shell configuration:")
|
||||
for key, value in api_keys.items():
|
||||
print(f" export {key}=\"{value}\"")
|
||||
|
||||
print(f"\nThen run: source {shell_file}")
|
||||
|
||||
|
||||
def setup_data_directory() -> Optional[Path]:
|
||||
"""Configure biomni data lake directory."""
|
||||
print("\n=== Data Lake Configuration ===")
|
||||
print("Biomni requires ~11GB for integrated biomedical databases.")
|
||||
|
||||
default_path = Path.cwd() / 'biomni_data'
|
||||
print(f"\nDefault location: {default_path}")
|
||||
|
||||
response = input("Use default location? [Y/n]: ").strip().lower()
|
||||
|
||||
if response == 'n':
|
||||
custom_path = input("Enter custom path: ").strip()
|
||||
data_path = Path(custom_path).expanduser().resolve()
|
||||
else:
|
||||
data_path = default_path
|
||||
|
||||
# Create directory if it doesn't exist
|
||||
data_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"\n✓ Data directory configured: {data_path}")
|
||||
print(" Data will be downloaded automatically on first use")
|
||||
|
||||
return data_path
|
||||
|
||||
|
||||
def test_installation(data_path: Path):
|
||||
"""Test biomni installation with a simple query."""
|
||||
print("\n=== Installation Test ===")
|
||||
print("Testing biomni installation with a simple query...")
|
||||
|
||||
response = input("Run test? [Y/n]: ").strip().lower()
|
||||
if response == 'n':
|
||||
print("Skipping test")
|
||||
return
|
||||
|
||||
test_code = f'''
|
||||
import os
|
||||
from biomni.agent import A1
|
||||
|
||||
# Use environment variables for API keys
|
||||
agent = A1(path='{data_path}', llm='claude-sonnet-4-20250514')
|
||||
|
||||
# Simple test query
|
||||
result = agent.go("What is the primary function of the TP53 gene?")
|
||||
print("Test result:", result)
|
||||
'''
|
||||
|
||||
test_file = Path('test_biomni.py')
|
||||
with open(test_file, 'w') as f:
|
||||
f.write(test_code)
|
||||
|
||||
print(f"\nTest script created: {test_file}")
|
||||
print("Running test...")
|
||||
|
||||
try:
|
||||
subprocess.run([sys.executable, str(test_file)], check=True)
|
||||
print("\n✓ Test completed successfully!")
|
||||
test_file.unlink() # Clean up test file
|
||||
except subprocess.CalledProcessError:
|
||||
print("\n❌ Test failed. Check your configuration.")
|
||||
print(f" Test script saved as {test_file} for debugging")
|
||||
|
||||
|
||||
def generate_example_script(data_path: Path):
|
||||
"""Generate example usage script."""
|
||||
example_code = f'''#!/usr/bin/env python3
|
||||
"""
|
||||
Example biomni usage script
|
||||
|
||||
This demonstrates basic biomni usage patterns.
|
||||
Modify this script for your research tasks.
|
||||
"""
|
||||
|
||||
from biomni.agent import A1
|
||||
|
||||
# Initialize agent
|
||||
agent = A1(
|
||||
path='{data_path}',
|
||||
llm='claude-sonnet-4-20250514' # or your preferred LLM
|
||||
)
|
||||
|
||||
# Example 1: Simple gene query
|
||||
print("Example 1: Gene function query")
|
||||
result = agent.go("""
|
||||
What are the main functions of the BRCA1 gene?
|
||||
Include information about:
|
||||
- Molecular function
|
||||
- Associated diseases
|
||||
- Protein interactions
|
||||
""")
|
||||
print(result)
|
||||
print("-" * 80)
|
||||
|
||||
# Example 2: Data analysis
|
||||
print("\\nExample 2: GWAS analysis")
|
||||
result = agent.go("""
|
||||
Explain how to analyze GWAS summary statistics for:
|
||||
1. Identifying genome-wide significant variants
|
||||
2. Mapping variants to genes
|
||||
3. Pathway enrichment analysis
|
||||
""")
|
||||
print(result)
|
||||
|
||||
# Save conversation history
|
||||
agent.save_conversation_history("example_results.pdf")
|
||||
print("\\nResults saved to example_results.pdf")
|
||||
'''
|
||||
|
||||
example_file = Path('example_biomni_usage.py')
|
||||
with open(example_file, 'w') as f:
|
||||
f.write(example_code)
|
||||
|
||||
print(f"\n✓ Example script created: {example_file}")
|
||||
|
||||
|
||||
def main():
|
||||
"""Main setup workflow."""
|
||||
print("=" * 60)
|
||||
print("Biomni Environment Setup")
|
||||
print("=" * 60)
|
||||
|
||||
# Step 1: Conda environment
|
||||
conda_success = setup_conda_environment()
|
||||
|
||||
if conda_success:
|
||||
print("\n⚠️ Remember to activate the environment:")
|
||||
print(" conda activate biomni_e1")
|
||||
print(" pip install biomni --upgrade")
|
||||
|
||||
# Step 2: API keys
|
||||
api_keys = setup_api_keys()
|
||||
|
||||
if api_keys:
|
||||
print("\nHow would you like to store API keys?")
|
||||
print("1. .env file (recommended, local to this directory)")
|
||||
print("2. Shell export (add to .bashrc/.zshrc)")
|
||||
|
||||
choice = input("Choose [1/2]: ").strip()
|
||||
|
||||
if choice == '2':
|
||||
save_api_keys(api_keys, method='shell_export')
|
||||
else:
|
||||
save_api_keys(api_keys, method='env_file')
|
||||
|
||||
# Step 3: Data directory
|
||||
data_path = setup_data_directory()
|
||||
|
||||
# Step 4: Generate example script
|
||||
if data_path:
|
||||
generate_example_script(data_path)
|
||||
|
||||
# Step 5: Test installation (optional)
|
||||
if api_keys and data_path:
|
||||
test_installation(data_path)
|
||||
|
||||
# Summary
|
||||
print("\n" + "=" * 60)
|
||||
print("Setup Complete!")
|
||||
print("=" * 60)
|
||||
|
||||
if conda_success:
|
||||
print("✓ Conda environment: biomni_e1")
|
||||
|
||||
if api_keys:
|
||||
print(f"✓ API keys configured: {', '.join(api_keys.keys())}")
|
||||
|
||||
if data_path:
|
||||
print(f"✓ Data directory: {data_path}")
|
||||
|
||||
print("\nNext steps:")
|
||||
if conda_success:
|
||||
print("1. conda activate biomni_e1")
|
||||
print("2. pip install biomni --upgrade")
|
||||
print("3. Run example_biomni_usage.py to test")
|
||||
else:
|
||||
print("1. Install conda/miniconda")
|
||||
print("2. Run this script again")
|
||||
|
||||
print("\nFor documentation, see:")
|
||||
print(" - GitHub: https://github.com/snap-stanford/biomni")
|
||||
print(" - Paper: https://www.biorxiv.org/content/10.1101/2025.05.30.656746v1")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
main()
|
||||
except KeyboardInterrupt:
|
||||
print("\n\nSetup interrupted by user")
|
||||
sys.exit(1)
|
||||
except Exception as e:
|
||||
print(f"\n❌ Error during setup: {e}")
|
||||
sys.exit(1)
|
||||
Reference in New Issue
Block a user