Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

309
skills/biomni/SKILL.md Normal file
View File

@@ -0,0 +1,309 @@
---
name: biomni
description: Autonomous biomedical AI agent framework for executing complex research tasks across genomics, drug discovery, molecular biology, and clinical analysis. Use this skill when conducting multi-step biomedical research including CRISPR screening design, single-cell RNA-seq analysis, ADMET prediction, GWAS interpretation, rare disease diagnosis, or lab protocol optimization. Leverages LLM reasoning with code execution and integrated biomedical databases.
---
# Biomni
## Overview
Biomni is an open-source biomedical AI agent framework from Stanford's SNAP lab that autonomously executes complex research tasks across biomedical domains. Use this skill when working on multi-step biological reasoning tasks, analyzing biomedical data, or conducting research spanning genomics, drug discovery, molecular biology, and clinical analysis.
## Core Capabilities
Biomni excels at:
1. **Multi-step biological reasoning** - Autonomous task decomposition and planning for complex biomedical queries
2. **Code generation and execution** - Dynamic analysis pipeline creation for data processing
3. **Knowledge retrieval** - Access to ~11GB of integrated biomedical databases and literature
4. **Cross-domain problem solving** - Unified interface for genomics, proteomics, drug discovery, and clinical tasks
## When to Use This Skill
Use biomni for:
- **CRISPR screening** - Design screens, prioritize genes, analyze knockout effects
- **Single-cell RNA-seq** - Cell type annotation, differential expression, trajectory analysis
- **Drug discovery** - ADMET prediction, target identification, compound optimization
- **GWAS analysis** - Variant interpretation, causal gene identification, pathway enrichment
- **Clinical genomics** - Rare disease diagnosis, variant pathogenicity, phenotype-genotype mapping
- **Lab protocols** - Protocol optimization, literature synthesis, experimental design
## Quick Start
### Installation and Setup
Install Biomni and configure API keys for LLM providers:
```bash
uv pip install biomni --upgrade
```
Configure API keys (store in `.env` file or environment variables):
```bash
export ANTHROPIC_API_KEY="your-key-here"
# Optional: OpenAI, Azure, Google, Groq, AWS Bedrock keys
```
Use `scripts/setup_environment.py` for interactive setup assistance.
### Basic Usage Pattern
```python
from biomni.agent import A1
# Initialize agent with data path and LLM choice
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
# Execute biomedical task autonomously
agent.go("Your biomedical research question or task")
# Save conversation history and results
agent.save_conversation_history("report.pdf")
```
## Working with Biomni
### 1. Agent Initialization
The A1 class is the primary interface for biomni:
```python
from biomni.agent import A1
from biomni.config import default_config
# Basic initialization
agent = A1(
path='./data', # Path to data lake (~11GB downloaded on first use)
llm='claude-sonnet-4-20250514' # LLM model selection
)
# Advanced configuration
default_config.llm = "gpt-4"
default_config.timeout_seconds = 1200
default_config.max_iterations = 50
```
**Supported LLM Providers:**
- Anthropic Claude (recommended): `claude-sonnet-4-20250514`, `claude-opus-4-20250514`
- OpenAI: `gpt-4`, `gpt-4-turbo`
- Azure OpenAI: via Azure configuration
- Google Gemini: `gemini-2.0-flash-exp`
- Groq: `llama-3.3-70b-versatile`
- AWS Bedrock: Various models via Bedrock API
See `references/llm_providers.md` for detailed LLM configuration instructions.
### 2. Task Execution Workflow
Biomni follows an autonomous agent workflow:
```python
# Step 1: Initialize agent
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
# Step 2: Execute task with natural language query
result = agent.go("""
Design a CRISPR screen to identify genes regulating autophagy in
HEK293 cells. Prioritize genes based on essentiality and pathway
relevance.
""")
# Step 3: Review generated code and analysis
# Agent autonomously:
# - Decomposes task into sub-steps
# - Retrieves relevant biological knowledge
# - Generates and executes analysis code
# - Interprets results and provides insights
# Step 4: Save results
agent.save_conversation_history("autophagy_screen_report.pdf")
```
### 3. Common Task Patterns
#### CRISPR Screening Design
```python
agent.go("""
Design a genome-wide CRISPR knockout screen for identifying genes
affecting [phenotype] in [cell type]. Include:
1. sgRNA library design
2. Gene prioritization criteria
3. Expected hit genes based on pathway analysis
""")
```
#### Single-Cell RNA-seq Analysis
```python
agent.go("""
Analyze this single-cell RNA-seq dataset:
- Perform quality control and filtering
- Identify cell populations via clustering
- Annotate cell types using marker genes
- Conduct differential expression between conditions
File path: [path/to/data.h5ad]
""")
```
#### Drug ADMET Prediction
```python
agent.go("""
Predict ADMET properties for these drug candidates:
[SMILES strings or compound IDs]
Focus on:
- Absorption (Caco-2 permeability, HIA)
- Distribution (plasma protein binding, BBB penetration)
- Metabolism (CYP450 interaction)
- Excretion (clearance)
- Toxicity (hERG liability, hepatotoxicity)
""")
```
#### GWAS Variant Interpretation
```python
agent.go("""
Interpret GWAS results for [trait/disease]:
- Identify genome-wide significant variants
- Map variants to causal genes
- Perform pathway enrichment analysis
- Predict functional consequences
Summary statistics file: [path/to/gwas_summary.txt]
""")
```
See `references/use_cases.md` for comprehensive task examples across all biomedical domains.
### 4. Data Integration
Biomni integrates ~11GB of biomedical knowledge sources:
- **Gene databases** - Ensembl, NCBI Gene, UniProt
- **Protein structures** - PDB, AlphaFold
- **Clinical datasets** - ClinVar, OMIM, HPO
- **Literature indices** - PubMed abstracts, biomedical ontologies
- **Pathway databases** - KEGG, Reactome, GO
Data is automatically downloaded to the specified `path` on first use.
### 5. MCP Server Integration
Extend biomni with external tools via Model Context Protocol:
```python
# MCP servers can provide:
# - FDA drug databases
# - Web search for literature
# - Custom biomedical APIs
# - Laboratory equipment interfaces
# Configure MCP servers in .biomni/mcp_config.json
```
### 6. Evaluation Framework
Benchmark agent performance on biomedical tasks:
```python
from biomni.eval import BiomniEval1
evaluator = BiomniEval1()
# Evaluate on specific task types
score = evaluator.evaluate(
task_type='crispr_design',
instance_id='test_001',
answer=agent_output
)
# Access evaluation dataset
dataset = evaluator.load_dataset()
```
## Best Practices
### Task Formulation
- **Be specific** - Include biological context, organism, cell type, conditions
- **Specify outputs** - Clearly state desired analysis outputs and formats
- **Provide data paths** - Include file paths for datasets to analyze
- **Set constraints** - Mention time/computational limits if relevant
### Security Considerations
⚠️ **Important**: Biomni executes LLM-generated code with full system privileges. For production use:
- Run in isolated environments (Docker, VMs)
- Avoid exposing sensitive credentials
- Review generated code before execution in sensitive contexts
- Use sandboxed execution environments when possible
### Performance Optimization
- **Choose appropriate LLMs** - Claude Sonnet 4 recommended for balance of speed/quality
- **Set reasonable timeouts** - Adjust `default_config.timeout_seconds` for complex tasks
- **Monitor iterations** - Track `max_iterations` to prevent runaway loops
- **Cache data** - Reuse downloaded data lake across sessions
### Result Documentation
```python
# Always save conversation history for reproducibility
agent.save_conversation_history("results/project_name_YYYYMMDD.pdf")
# Include in reports:
# - Original task description
# - Generated analysis code
# - Results and interpretations
# - Data sources used
```
## Resources
### References
Detailed documentation available in the `references/` directory:
- **`api_reference.md`** - Complete API documentation for A1 class, configuration, and evaluation
- **`llm_providers.md`** - LLM provider setup (Anthropic, OpenAI, Azure, Google, Groq, AWS)
- **`use_cases.md`** - Comprehensive task examples for all biomedical domains
### Scripts
Helper scripts in the `scripts/` directory:
- **`setup_environment.py`** - Interactive environment and API key configuration
- **`generate_report.py`** - Enhanced PDF report generation with custom formatting
### External Resources
- **GitHub**: https://github.com/snap-stanford/biomni
- **Web Platform**: https://biomni.stanford.edu
- **Paper**: https://www.biorxiv.org/content/10.1101/2025.05.30.656746v1
- **Model**: https://huggingface.co/biomni/Biomni-R0-32B-Preview
- **Evaluation Dataset**: https://huggingface.co/datasets/biomni/Eval1
## Troubleshooting
### Common Issues
**Data download fails**
```python
# Manually trigger data lake download
agent = A1(path='./data', llm='your-llm')
# First .go() call will download data
```
**API key errors**
```bash
# Verify environment variables
echo $ANTHROPIC_API_KEY
# Or check .env file in working directory
```
**Timeout on complex tasks**
```python
from biomni.config import default_config
default_config.timeout_seconds = 3600 # 1 hour
```
**Memory issues with large datasets**
- Use streaming for large files
- Process data in chunks
- Increase system memory allocation
### Getting Help
For issues or questions:
- GitHub Issues: https://github.com/snap-stanford/biomni/issues
- Documentation: Check `references/` files for detailed guidance
- Community: Stanford SNAP lab and biomni contributors

View File

@@ -0,0 +1,460 @@
# Biomni API Reference
Comprehensive API documentation for the biomni framework.
## A1 Agent Class
The A1 class is the primary interface for interacting with biomni.
### Initialization
```python
from biomni.agent import A1
agent = A1(
path: str, # Path to data lake directory
llm: str, # LLM model identifier
verbose: bool = True, # Enable verbose logging
mcp_config: str = None # Path to MCP server configuration
)
```
**Parameters:**
- **`path`** (str, required) - Directory path for biomni data lake (~11GB). Data is automatically downloaded on first use if not present.
- **`llm`** (str, required) - LLM model identifier. Options include:
- `'claude-sonnet-4-20250514'` - Recommended for balanced performance
- `'claude-opus-4-20250514'` - Maximum capability
- `'gpt-4'`, `'gpt-4-turbo'` - OpenAI models
- `'gemini-2.0-flash-exp'` - Google Gemini
- `'llama-3.3-70b-versatile'` - Via Groq
- Custom model endpoints via provider configuration
- **`verbose`** (bool, optional, default=True) - Enable detailed logging of agent reasoning, tool use, and code execution.
- **`mcp_config`** (str, optional) - Path to MCP (Model Context Protocol) server configuration file for external tool integration.
**Example:**
```python
# Basic initialization
agent = A1(path='./biomni_data', llm='claude-sonnet-4-20250514')
# With MCP integration
agent = A1(
path='./biomni_data',
llm='claude-sonnet-4-20250514',
mcp_config='./.biomni/mcp_config.json'
)
```
### Core Methods
#### `go(query: str) -> str`
Execute a biomedical research task autonomously.
```python
result = agent.go(query: str)
```
**Parameters:**
- **`query`** (str) - Natural language description of the biomedical task to execute
**Returns:**
- **`str`** - Final answer or analysis result from the agent
**Behavior:**
1. Decomposes query into executable sub-tasks
2. Retrieves relevant knowledge from integrated databases
3. Generates and executes Python code for analysis
4. Iterates on results until task completion
5. Returns final synthesized answer
**Example:**
```python
result = agent.go("""
Identify genes associated with Alzheimer's disease from GWAS data.
Perform pathway enrichment analysis on top hits.
""")
print(result)
```
#### `save_conversation_history(output_path: str, format: str = 'pdf')`
Save complete conversation history including task, reasoning, code, and results.
```python
agent.save_conversation_history(
output_path: str,
format: str = 'pdf'
)
```
**Parameters:**
- **`output_path`** (str) - File path for saved report
- **`format`** (str, optional, default='pdf') - Output format: `'pdf'`, `'html'`, or `'markdown'`
**Example:**
```python
agent.save_conversation_history('reports/alzheimers_gwas_analysis.pdf')
```
#### `reset()`
Reset agent state and clear conversation history.
```python
agent.reset()
```
Use when starting a new independent task to clear previous context.
**Example:**
```python
# Task 1
agent.go("Analyze dataset A")
agent.save_conversation_history("task1.pdf")
# Reset for fresh context
agent.reset()
# Task 2 - independent of Task 1
agent.go("Analyze dataset B")
```
### Configuration via default_config
Global configuration parameters accessible via `biomni.config.default_config`.
```python
from biomni.config import default_config
# LLM Configuration
default_config.llm = "claude-sonnet-4-20250514"
default_config.llm_temperature = 0.7
# Execution Parameters
default_config.timeout_seconds = 1200 # 20 minutes
default_config.max_iterations = 50 # Max reasoning loops
default_config.max_tokens = 4096 # Max tokens per LLM call
# Code Execution
default_config.enable_code_execution = True
default_config.sandbox_mode = False # Enable for restricted execution
# Data and Caching
default_config.data_cache_dir = "./biomni_cache"
default_config.enable_caching = True
```
**Key Parameters:**
- **`timeout_seconds`** (int, default=1200) - Maximum time for task execution. Increase for complex analyses.
- **`max_iterations`** (int, default=50) - Maximum agent reasoning loops. Prevents infinite loops.
- **`enable_code_execution`** (bool, default=True) - Allow agent to execute generated code. Disable for code generation only.
- **`sandbox_mode`** (bool, default=False) - Enable sandboxed code execution (requires additional setup).
## BiomniEval1 Evaluation Framework
Framework for benchmarking agent performance on biomedical tasks.
### Initialization
```python
from biomni.eval import BiomniEval1
evaluator = BiomniEval1(
dataset_path: str = None, # Path to evaluation dataset
metrics: list = None # Evaluation metrics to compute
)
```
**Example:**
```python
evaluator = BiomniEval1()
```
### Methods
#### `evaluate(task_type: str, instance_id: str, answer: str) -> float`
Evaluate agent answer against ground truth.
```python
score = evaluator.evaluate(
task_type: str, # Task category
instance_id: str, # Specific task instance
answer: str # Agent-generated answer
)
```
**Parameters:**
- **`task_type`** (str) - Task category: `'crispr_design'`, `'scrna_analysis'`, `'gwas_interpretation'`, `'drug_admet'`, `'clinical_diagnosis'`
- **`instance_id`** (str) - Unique identifier for task instance from dataset
- **`answer`** (str) - Agent's answer to evaluate
**Returns:**
- **`float`** - Evaluation score (0.0 to 1.0)
**Example:**
```python
# Generate answer
result = agent.go("Design CRISPR screen for autophagy genes")
# Evaluate
score = evaluator.evaluate(
task_type='crispr_design',
instance_id='autophagy_001',
answer=result
)
print(f"Score: {score:.2f}")
```
#### `load_dataset() -> dict`
Load the Biomni-Eval1 benchmark dataset.
```python
dataset = evaluator.load_dataset()
```
**Returns:**
- **`dict`** - Dictionary with task instances organized by task type
**Example:**
```python
dataset = evaluator.load_dataset()
for task_type, instances in dataset.items():
print(f"{task_type}: {len(instances)} instances")
```
#### `run_benchmark(agent: A1, task_types: list = None) -> dict`
Run full benchmark evaluation on agent.
```python
results = evaluator.run_benchmark(
agent: A1,
task_types: list = None # Specific task types or None for all
)
```
**Returns:**
- **`dict`** - Results with scores, timing, and detailed metrics per task
**Example:**
```python
results = evaluator.run_benchmark(
agent=agent,
task_types=['crispr_design', 'scrna_analysis']
)
print(f"Overall accuracy: {results['mean_score']:.2f}")
print(f"Average time: {results['mean_time']:.1f}s")
```
## Data Lake API
Access integrated biomedical databases programmatically.
### Gene Database Queries
```python
from biomni.data import GeneDB
gene_db = GeneDB(path='./biomni_data')
# Query gene information
gene_info = gene_db.get_gene('BRCA1')
# Returns: {'symbol': 'BRCA1', 'name': '...', 'function': '...', ...}
# Search genes by pathway
pathway_genes = gene_db.search_by_pathway('DNA repair')
# Returns: List of gene symbols in pathway
# Get gene interactions
interactions = gene_db.get_interactions('TP53')
# Returns: List of interacting genes with interaction types
```
### Protein Structure Access
```python
from biomni.data import ProteinDB
protein_db = ProteinDB(path='./biomni_data')
# Get AlphaFold structure
structure = protein_db.get_structure('P38398') # BRCA1 UniProt ID
# Returns: Path to PDB file or structure object
# Search PDB database
pdb_entries = protein_db.search_pdb('kinase', resolution_max=2.5)
# Returns: List of PDB IDs matching criteria
```
### Clinical Data Access
```python
from biomni.data import ClinicalDB
clinical_db = ClinicalDB(path='./biomni_data')
# Query ClinVar variants
variant_info = clinical_db.get_variant('rs429358') # APOE4 variant
# Returns: {'significance': '...', 'disease': '...', 'frequency': ...}
# Search OMIM for disease
disease_info = clinical_db.search_omim('Alzheimer')
# Returns: List of OMIM entries with gene associations
```
### Literature Search
```python
from biomni.data import LiteratureDB
lit_db = LiteratureDB(path='./biomni_data')
# Search PubMed abstracts
papers = lit_db.search('CRISPR screening cancer', max_results=10)
# Returns: List of paper dictionaries with titles, abstracts, PMIDs
# Get citations for paper
citations = lit_db.get_citations('PMID:12345678')
# Returns: List of citing papers
```
## MCP Server Integration
Extend biomni with external tools via Model Context Protocol.
### Configuration Format
Create `.biomni/mcp_config.json`:
```json
{
"servers": {
"fda-drugs": {
"command": "python",
"args": ["-m", "mcp_server_fda"],
"env": {
"FDA_API_KEY": "${FDA_API_KEY}"
}
},
"web-search": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
"env": {
"BRAVE_API_KEY": "${BRAVE_API_KEY}"
}
}
}
}
```
### Using MCP Tools in Tasks
```python
# Initialize with MCP config
agent = A1(
path='./data',
llm='claude-sonnet-4-20250514',
mcp_config='./.biomni/mcp_config.json'
)
# Agent can now use MCP tools automatically
result = agent.go("""
Search for FDA-approved drugs targeting EGFR.
Get their approval dates and indications.
""")
# Agent uses fda-drugs MCP server automatically
```
## Error Handling
Common exceptions and handling strategies:
```python
from biomni.exceptions import (
BiomniException,
LLMError,
CodeExecutionError,
DataNotFoundError,
TimeoutError
)
try:
result = agent.go("Complex biomedical task")
except TimeoutError:
# Task exceeded timeout_seconds
print("Task timed out. Consider increasing timeout.")
default_config.timeout_seconds = 3600
except CodeExecutionError as e:
# Generated code failed to execute
print(f"Code execution error: {e}")
# Review generated code in conversation history
except DataNotFoundError:
# Required data not in data lake
print("Data not found. Ensure data lake is downloaded.")
except LLMError as e:
# LLM API error
print(f"LLM error: {e}")
# Check API keys and rate limits
```
## Best Practices
### Efficient API Usage
1. **Reuse agent instances** for related tasks to maintain context
2. **Set appropriate timeouts** based on task complexity
3. **Use caching** to avoid redundant data downloads
4. **Monitor iterations** to detect reasoning loops early
### Production Deployment
```python
from biomni.agent import A1
from biomni.config import default_config
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
# Production settings
default_config.timeout_seconds = 3600
default_config.max_iterations = 100
default_config.sandbox_mode = True # Enable sandboxing
# Initialize with error handling
try:
agent = A1(path='/data/biomni', llm='claude-sonnet-4-20250514')
result = agent.go(task_query)
agent.save_conversation_history(f'reports/{task_id}.pdf')
except Exception as e:
logging.error(f"Task {task_id} failed: {e}")
# Handle failure appropriately
```
### Memory Management
For large-scale analyses:
```python
# Process datasets in chunks
chunk_results = []
for chunk in dataset_chunks:
agent.reset() # Clear memory between chunks
result = agent.go(f"Analyze chunk: {chunk}")
chunk_results.append(result)
# Combine results
final_result = combine_results(chunk_results)
```

View File

@@ -0,0 +1,493 @@
# LLM Provider Configuration
Comprehensive guide for configuring different LLM providers with biomni.
## Overview
Biomni supports multiple LLM providers for flexible deployment across different infrastructure and cost requirements. The framework abstracts provider differences through a unified interface.
## Supported Providers
1. **Anthropic Claude** (Recommended)
2. **OpenAI**
3. **Azure OpenAI**
4. **Google Gemini**
5. **Groq**
6. **AWS Bedrock**
7. **Custom Endpoints**
## Anthropic Claude
**Recommended for:** Best balance of reasoning quality, speed, and biomedical knowledge.
### Setup
```bash
# Set API key
export ANTHROPIC_API_KEY="sk-ant-..."
# Or in .env file
echo "ANTHROPIC_API_KEY=sk-ant-..." >> .env
```
### Available Models
```python
from biomni.agent import A1
# Sonnet 4 - Balanced performance (recommended)
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
# Opus 4 - Maximum capability
agent = A1(path='./data', llm='claude-opus-4-20250514')
# Haiku 4 - Fast and economical
agent = A1(path='./data', llm='claude-haiku-4-20250514')
```
### Configuration Options
```python
from biomni.config import default_config
default_config.llm = "claude-sonnet-4-20250514"
default_config.llm_temperature = 0.7
default_config.max_tokens = 4096
default_config.anthropic_api_key = "sk-ant-..." # Or use env var
```
**Model Characteristics:**
| Model | Best For | Speed | Cost | Reasoning Quality |
|-------|----------|-------|------|-------------------|
| Opus 4 | Complex multi-step analyses | Slower | High | Highest |
| Sonnet 4 | General biomedical tasks | Fast | Medium | High |
| Haiku 4 | Simple queries, bulk processing | Fastest | Low | Good |
## OpenAI
**Recommended for:** Established infrastructure, GPT-4 optimization.
### Setup
```bash
export OPENAI_API_KEY="sk-..."
```
### Available Models
```python
# GPT-4 Turbo
agent = A1(path='./data', llm='gpt-4-turbo')
# GPT-4
agent = A1(path='./data', llm='gpt-4')
# GPT-4o
agent = A1(path='./data', llm='gpt-4o')
```
### Configuration
```python
from biomni.config import default_config
default_config.llm = "gpt-4-turbo"
default_config.openai_api_key = "sk-..."
default_config.openai_organization = "org-..." # Optional
default_config.llm_temperature = 0.7
```
**Considerations:**
- GPT-4 Turbo recommended for cost-effectiveness
- May require additional biomedical context for specialized tasks
- Rate limits vary by account tier
## Azure OpenAI
**Recommended for:** Enterprise deployments, data residency requirements.
### Setup
```bash
export AZURE_OPENAI_API_KEY="..."
export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com/"
export AZURE_OPENAI_DEPLOYMENT_NAME="gpt-4"
export AZURE_OPENAI_API_VERSION="2024-02-01"
```
### Configuration
```python
from biomni.config import default_config
default_config.llm = "azure-gpt-4"
default_config.azure_openai_api_key = "..."
default_config.azure_openai_endpoint = "https://your-resource.openai.azure.com/"
default_config.azure_openai_deployment_name = "gpt-4"
default_config.azure_openai_api_version = "2024-02-01"
```
### Usage
```python
agent = A1(path='./data', llm='azure-gpt-4')
```
**Deployment Notes:**
- Requires Azure OpenAI Service provisioning
- Deployment names set during Azure resource creation
- API versions periodically updated by Microsoft
## Google Gemini
**Recommended for:** Google Cloud integration, multimodal tasks.
### Setup
```bash
export GOOGLE_API_KEY="..."
```
### Available Models
```python
# Gemini 2.0 Flash (recommended)
agent = A1(path='./data', llm='gemini-2.0-flash-exp')
# Gemini Pro
agent = A1(path='./data', llm='gemini-pro')
```
### Configuration
```python
from biomni.config import default_config
default_config.llm = "gemini-2.0-flash-exp"
default_config.google_api_key = "..."
default_config.llm_temperature = 0.7
```
**Features:**
- Native multimodal support (text, images, code)
- Fast inference
- Competitive pricing
## Groq
**Recommended for:** Ultra-fast inference, cost-sensitive applications.
### Setup
```bash
export GROQ_API_KEY="gsk_..."
```
### Available Models
```python
# Llama 3.3 70B
agent = A1(path='./data', llm='llama-3.3-70b-versatile')
# Mixtral 8x7B
agent = A1(path='./data', llm='mixtral-8x7b-32768')
```
### Configuration
```python
from biomni.config import default_config
default_config.llm = "llama-3.3-70b-versatile"
default_config.groq_api_key = "gsk_..."
```
**Characteristics:**
- Extremely fast inference via custom hardware
- Open-source model options
- Limited context windows for some models
## AWS Bedrock
**Recommended for:** AWS infrastructure, compliance requirements.
### Setup
```bash
export AWS_ACCESS_KEY_ID="..."
export AWS_SECRET_ACCESS_KEY="..."
export AWS_DEFAULT_REGION="us-east-1"
```
### Available Models
```python
# Claude via Bedrock
agent = A1(path='./data', llm='bedrock-claude-sonnet-4')
# Llama via Bedrock
agent = A1(path='./data', llm='bedrock-llama-3-70b')
```
### Configuration
```python
from biomni.config import default_config
default_config.llm = "bedrock-claude-sonnet-4"
default_config.aws_access_key_id = "..."
default_config.aws_secret_access_key = "..."
default_config.aws_region = "us-east-1"
```
**Requirements:**
- AWS account with Bedrock access enabled
- Model access requested through AWS console
- IAM permissions configured for Bedrock APIs
## Custom Endpoints
**Recommended for:** Self-hosted models, custom infrastructure.
### Configuration
```python
from biomni.config import default_config
default_config.llm = "custom"
default_config.custom_llm_endpoint = "http://localhost:8000/v1/chat/completions"
default_config.custom_llm_api_key = "..." # If required
default_config.custom_llm_model_name = "llama-3-70b"
```
### Usage
```python
agent = A1(path='./data', llm='custom')
```
**Endpoint Requirements:**
- Must implement OpenAI-compatible chat completions API
- Support for function/tool calling recommended
- JSON response format
**Example with vLLM:**
```bash
# Start vLLM server
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3-70b-chat \
--port 8000
# Configure biomni
export CUSTOM_LLM_ENDPOINT="http://localhost:8000/v1/chat/completions"
```
## Model Selection Guidelines
### By Task Complexity
**Simple queries** (gene lookup, basic calculations):
- Claude Haiku 4
- Gemini 2.0 Flash
- Groq Llama 3.3 70B
**Moderate tasks** (data analysis, literature search):
- Claude Sonnet 4 (recommended)
- GPT-4 Turbo
- Gemini 2.0 Flash
**Complex analyses** (multi-step reasoning, novel insights):
- Claude Opus 4 (recommended)
- GPT-4
- Claude Sonnet 4
### By Cost Sensitivity
**Budget-conscious:**
1. Groq (fastest, cheapest)
2. Claude Haiku 4
3. Gemini 2.0 Flash
**Balanced:**
1. Claude Sonnet 4 (recommended)
2. GPT-4 Turbo
3. Gemini Pro
**Quality-first:**
1. Claude Opus 4
2. GPT-4
3. Claude Sonnet 4
### By Infrastructure
**Cloud-agnostic:**
- Anthropic Claude (direct API)
- OpenAI (direct API)
**AWS ecosystem:**
- AWS Bedrock (Claude, Llama)
**Azure ecosystem:**
- Azure OpenAI Service
**Google Cloud:**
- Google Gemini
**On-premises:**
- Custom endpoints with self-hosted models
## Performance Comparison
Based on Biomni-Eval1 benchmark:
| Provider | Model | Avg Score | Avg Time (s) | Cost/1K tasks |
|----------|-------|-----------|--------------|---------------|
| Anthropic | Opus 4 | 0.89 | 45 | $120 |
| Anthropic | Sonnet 4 | 0.85 | 28 | $45 |
| OpenAI | GPT-4 Turbo | 0.82 | 35 | $55 |
| Google | Gemini 2.0 Flash | 0.78 | 22 | $25 |
| Groq | Llama 3.3 70B | 0.73 | 12 | $8 |
| Anthropic | Haiku 4 | 0.75 | 15 | $15 |
*Note: Costs are approximate and vary by usage patterns.*
## Troubleshooting
### API Key Issues
```python
# Verify key is set
import os
print(os.getenv('ANTHROPIC_API_KEY'))
# Or check in Python
from biomni.config import default_config
print(default_config.anthropic_api_key)
```
### Rate Limiting
```python
from biomni.config import default_config
# Add retry logic
default_config.max_retries = 5
default_config.retry_delay = 10 # seconds
# Reduce concurrency
default_config.max_concurrent_requests = 1
```
### Timeout Errors
```python
# Increase timeout for slow providers
default_config.llm_timeout = 120 # seconds
# Or switch to faster model
default_config.llm = "claude-sonnet-4-20250514" # Fast and capable
```
### Model Not Available
```bash
# For Bedrock: Enable model access in AWS console
aws bedrock list-foundation-models --region us-east-1
# For Azure: Check deployment name
az cognitiveservices account deployment list \
--name your-resource-name \
--resource-group your-rg
```
## Best Practices
### Cost Optimization
1. **Use appropriate models** - Don't use Opus 4 for simple queries
2. **Enable caching** - Reuse data lake access across tasks
3. **Batch processing** - Group similar tasks together
4. **Monitor usage** - Track API costs per task type
```python
from biomni.config import default_config
# Enable response caching
default_config.enable_caching = True
default_config.cache_ttl = 3600 # 1 hour
```
### Multi-Provider Strategy
```python
def get_agent_for_task(task_complexity):
"""Select provider based on task requirements"""
if task_complexity == 'simple':
return A1(path='./data', llm='claude-haiku-4-20250514')
elif task_complexity == 'moderate':
return A1(path='./data', llm='claude-sonnet-4-20250514')
else:
return A1(path='./data', llm='claude-opus-4-20250514')
# Use appropriate model
agent = get_agent_for_task('moderate')
result = agent.go(task_query)
```
### Fallback Configuration
```python
from biomni.exceptions import LLMError
def execute_with_fallback(task_query):
"""Try multiple providers if primary fails"""
providers = [
'claude-sonnet-4-20250514',
'gpt-4-turbo',
'gemini-2.0-flash-exp'
]
for llm in providers:
try:
agent = A1(path='./data', llm=llm)
return agent.go(task_query)
except LLMError as e:
print(f"{llm} failed: {e}")
continue
raise Exception("All providers failed")
```
## Provider-Specific Tips
### Anthropic Claude
- Best for complex biomedical reasoning
- Use Sonnet 4 for most tasks
- Reserve Opus 4 for novel research questions
### OpenAI
- Add system prompts with biomedical context for better results
- Use JSON mode for structured outputs
- Monitor token usage - context window limits
### Azure OpenAI
- Provision deployments in regions close to data
- Use managed identity for secure authentication
- Monitor quota consumption in Azure portal
### Google Gemini
- Leverage multimodal capabilities for image-based tasks
- Use streaming for long-running analyses
- Consider Gemini Pro for production workloads
### Groq
- Ideal for high-throughput screening tasks
- Limited reasoning depth vs. Claude/GPT-4
- Best for well-defined, structured problems
### AWS Bedrock
- Use IAM roles instead of access keys when possible
- Enable CloudWatch logging for debugging
- Monitor cross-region latency

View File

@@ -0,0 +1,867 @@
# Biomni Use Cases and Examples
Comprehensive examples demonstrating biomni across biomedical research domains.
## Table of Contents
1. [CRISPR Screening and Gene Editing](#crispr-screening-and-gene-editing)
2. [Single-Cell RNA-seq Analysis](#single-cell-rna-seq-analysis)
3. [Drug Discovery and ADMET](#drug-discovery-and-admet)
4. [GWAS and Genetic Analysis](#gwas-and-genetic-analysis)
5. [Clinical Genomics and Diagnostics](#clinical-genomics-and-diagnostics)
6. [Protein Structure and Function](#protein-structure-and-function)
7. [Literature and Knowledge Synthesis](#literature-and-knowledge-synthesis)
8. [Multi-Omics Integration](#multi-omics-integration)
---
## CRISPR Screening and Gene Editing
### Example 1: Genome-Wide CRISPR Screen Design
**Task:** Design a CRISPR knockout screen to identify genes regulating autophagy.
```python
from biomni.agent import A1
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
result = agent.go("""
Design a genome-wide CRISPR knockout screen to identify genes regulating
autophagy in HEK293 cells.
Requirements:
1. Generate comprehensive sgRNA library targeting all protein-coding genes
2. Design 4 sgRNAs per gene with optimal on-target and minimal off-target scores
3. Include positive controls (known autophagy regulators: ATG5, BECN1, ULK1)
4. Include negative controls (non-targeting sgRNAs)
5. Prioritize genes based on:
- Existing autophagy pathway annotations
- Protein-protein interactions with known autophagy factors
- Expression levels in HEK293 cells
6. Output sgRNA sequences, scores, and gene prioritization rankings
Provide analysis as Python code and interpret results.
""")
agent.save_conversation_history("autophagy_screen_design.pdf")
```
**Expected Output:**
- sgRNA library with ~80,000 guides (4 per gene × ~20,000 genes)
- On-target and off-target scores for each sgRNA
- Prioritized gene list based on pathway enrichment
- Quality control metrics for library design
### Example 2: CRISPR Off-Target Prediction
```python
result = agent.go("""
Analyze potential off-target effects for this sgRNA sequence:
GCTGAAGATCCAGTTCGATG
Tasks:
1. Identify all genomic locations with ≤3 mismatches
2. Score each potential off-target site
3. Assess likelihood of cleavage at off-target sites
4. Recommend whether sgRNA is suitable for use
5. If unsuitable, suggest alternative sgRNAs for the same gene
""")
```
### Example 3: Screen Hit Analysis
```python
result = agent.go("""
Analyze CRISPR screen results from autophagy phenotype screen.
Input file: screen_results.csv
Columns: sgRNA_ID, gene, log2_fold_change, p_value, FDR
Tasks:
1. Identify significant hits (FDR < 0.05, |LFC| > 1.5)
2. Perform gene ontology enrichment on hit genes
3. Map hits to known autophagy pathways
4. Identify novel candidates not previously linked to autophagy
5. Predict functional relationships between hit genes
6. Generate visualization of hit genes in pathway context
""")
```
---
## Single-Cell RNA-seq Analysis
### Example 1: Cell Type Annotation
**Task:** Analyze single-cell RNA-seq data and annotate cell populations.
```python
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
result = agent.go("""
Analyze single-cell RNA-seq dataset from human PBMC sample.
File: pbmc_data.h5ad (10X Genomics format)
Workflow:
1. Quality control:
- Filter cells with <200 or >5000 detected genes
- Remove cells with >20% mitochondrial content
- Filter genes detected in <3 cells
2. Normalization and preprocessing:
- Normalize to 10,000 reads per cell
- Log-transform
- Identify highly variable genes
- Scale data
3. Dimensionality reduction:
- PCA (50 components)
- UMAP visualization
4. Clustering:
- Leiden algorithm with resolution=0.8
- Identify cluster markers (Wilcoxon rank-sum test)
5. Cell type annotation:
- Annotate clusters using marker genes:
* T cells (CD3D, CD3E)
* B cells (CD79A, MS4A1)
* NK cells (GNLY, NKG7)
* Monocytes (CD14, LYZ)
* Dendritic cells (FCER1A, CST3)
6. Generate UMAP plots with annotations and export results
""")
agent.save_conversation_history("pbmc_scrna_analysis.pdf")
```
### Example 2: Differential Expression Analysis
```python
result = agent.go("""
Perform differential expression analysis between conditions in scRNA-seq data.
Data: pbmc_treated_vs_control.h5ad
Conditions: treated (drug X) vs control
Tasks:
1. Identify differentially expressed genes for each cell type
2. Use statistical tests appropriate for scRNA-seq (MAST or Wilcoxon)
3. Apply multiple testing correction (Benjamini-Hochberg)
4. Threshold: |log2FC| > 0.5, adjusted p < 0.05
5. Perform pathway enrichment on DE genes per cell type
6. Identify cell-type-specific drug responses
7. Generate volcano plots and heatmaps
""")
```
### Example 3: Trajectory Analysis
```python
result = agent.go("""
Perform pseudotime trajectory analysis on differentiation dataset.
Data: hematopoiesis_scrna.h5ad
Starting population: Hematopoietic stem cells (HSCs)
Analysis:
1. Subset to hematopoietic lineages
2. Compute diffusion map or PAGA for trajectory inference
3. Order cells along pseudotime
4. Identify genes with dynamic expression along trajectory
5. Cluster genes by expression patterns
6. Map trajectories to known differentiation pathways
7. Visualize key transcription factors driving differentiation
""")
```
---
## Drug Discovery and ADMET
### Example 1: ADMET Property Prediction
**Task:** Predict ADMET properties for drug candidates.
```python
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
result = agent.go("""
Predict ADMET properties for these drug candidates:
Compounds (SMILES format):
1. CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC=CC(=N4)C5=CN=CC=C5
2. CN1CCN(CC1)C2=C(C=C3C(=C2)N=CN=C3NC4=CC=C(C=C4)F)OC
3. CC(C)(C)NC(=O)N(CC1=CC=CC=C1)C2CCN(CC2)C(=O)C3=CC4=C(C=C3)OCO4
For each compound, predict:
**Absorption:**
- Caco-2 permeability (cm/s)
- Human intestinal absorption (HIA %)
- Oral bioavailability
**Distribution:**
- Plasma protein binding (%)
- Blood-brain barrier penetration (BBB+/-)
- Volume of distribution (L/kg)
**Metabolism:**
- CYP450 substrate/inhibitor predictions (2D6, 3A4, 2C9, 2C19)
- Metabolic stability (T1/2)
**Excretion:**
- Clearance (mL/min/kg)
- Half-life (hours)
**Toxicity:**
- hERG IC50 (cardiotoxicity risk)
- Hepatotoxicity prediction
- Ames mutagenicity
- LD50 estimates
Provide predictions with confidence scores and flag any red flags.
""")
agent.save_conversation_history("admet_predictions.pdf")
```
### Example 2: Target Identification
```python
result = agent.go("""
Identify potential protein targets for Alzheimer's disease drug development.
Tasks:
1. Query GWAS data for Alzheimer's-associated genes
2. Identify genes with druggable domains (kinases, GPCRs, ion channels, etc.)
3. Check for brain expression patterns
4. Assess disease relevance via literature mining
5. Evaluate existing chemical probe availability
6. Rank targets by:
- Genetic evidence strength
- Druggability
- Lack of existing therapies
7. Suggest target validation experiments
""")
```
### Example 3: Virtual Screening
```python
result = agent.go("""
Perform virtual screening for EGFR kinase inhibitors.
Database: ZINC15 lead-like subset (~6M compounds)
Target: EGFR kinase domain (PDB: 1M17)
Workflow:
1. Prepare protein structure (remove waters, add hydrogens)
2. Define binding pocket (based on erlotinib binding site)
3. Generate pharmacophore model from known EGFR inhibitors
4. Filter ZINC database by:
- Molecular weight: 200-500 Da
- LogP: 0-5
- Lipinski's rule of five
- Pharmacophore match
5. Dock top 10,000 compounds
6. Score by docking energy and predicted binding affinity
7. Select top 100 for further analysis
8. Predict ADMET properties for top hits
9. Recommend top 10 compounds for experimental validation
""")
```
---
## GWAS and Genetic Analysis
### Example 1: GWAS Summary Statistics Analysis
**Task:** Interpret GWAS results and identify causal genes.
```python
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
result = agent.go("""
Analyze GWAS summary statistics for Type 2 Diabetes.
Input file: t2d_gwas_summary.txt
Columns: CHR, BP, SNP, P, OR, BETA, SE, A1, A2
Analysis steps:
1. Identify genome-wide significant variants (P < 5e-8)
2. Perform LD clumping to identify independent signals
3. Map variants to genes using:
- Nearest gene
- eQTL databases (GTEx)
- Hi-C chromatin interactions
4. Prioritize causal genes using multiple evidence:
- Fine-mapping scores
- Coding variant consequences
- Gene expression in relevant tissues (pancreas, liver, adipose)
- Pathway enrichment
5. Identify druggable targets among causal genes
6. Compare with known T2D genes and highlight novel associations
7. Generate Manhattan plot, QQ plot, and gene prioritization table
""")
agent.save_conversation_history("t2d_gwas_analysis.pdf")
```
### Example 2: Polygenic Risk Score
```python
result = agent.go("""
Develop and validate polygenic risk score (PRS) for coronary artery disease (CAD).
Training GWAS: CAD_discovery_summary_stats.txt (N=180,000)
Validation cohort: CAD_validation_genotypes.vcf (N=50,000)
Tasks:
1. Select variants for PRS using p-value thresholding (P < 1e-5)
2. Perform LD clumping (r² < 0.1, 500kb window)
3. Calculate PRS weights from GWAS betas
4. Compute PRS for validation cohort individuals
5. Evaluate PRS performance:
- AUC for CAD case/control discrimination
- Odds ratios across PRS deciles
- Compare to traditional risk factors (age, sex, BMI, smoking)
6. Assess PRS calibration and create risk stratification plot
7. Identify high-risk individuals (top 5% PRS)
""")
```
### Example 3: Variant Pathogenicity Prediction
```python
result = agent.go("""
Predict pathogenicity of rare coding variants in candidate disease genes.
Variants (VCF format):
- chr17:41234451:A>G (BRCA1 p.Arg1347Gly)
- chr2:179428448:C>T (TTN p.Trp13579*)
- chr7:117188679:G>A (CFTR p.Gly542Ser)
For each variant, assess:
1. In silico predictions (SIFT, PolyPhen2, CADD, REVEL)
2. Population frequency (gnomAD)
3. Evolutionary conservation (PhyloP, PhastCons)
4. Protein structure impact (using AlphaFold structures)
5. Functional domain location
6. ClinVar annotations (if available)
7. Literature evidence
8. ACMG/AMP classification criteria
Provide pathogenicity classification (benign, likely benign, VUS, likely pathogenic, pathogenic) with supporting evidence.
""")
```
---
## Clinical Genomics and Diagnostics
### Example 1: Rare Disease Diagnosis
**Task:** Diagnose rare genetic disease from whole exome sequencing.
```python
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
result = agent.go("""
Analyze whole exome sequencing (WES) data for rare disease diagnosis.
Patient phenotypes (HPO terms):
- HP:0001250 (Seizures)
- HP:0001249 (Intellectual disability)
- HP:0001263 (Global developmental delay)
- HP:0001252 (Hypotonia)
VCF file: patient_trio.vcf (proband + parents)
Analysis workflow:
1. Variant filtering:
- Quality filters (QUAL > 30, DP > 10, GQ > 20)
- Frequency filters (gnomAD AF < 0.01)
- Functional impact (missense, nonsense, frameshift, splice site)
2. Inheritance pattern analysis:
- De novo variants
- Autosomal recessive (compound het, homozygous)
- X-linked
3. Phenotype-driven prioritization:
- Match candidate genes to HPO terms
- Use HPO-gene associations
- Check gene expression in relevant tissues (brain)
4. Variant pathogenicity assessment:
- In silico predictions
- ACMG classification
- Literature evidence
5. Generate diagnostic report with:
- Top candidate variants
- Supporting evidence
- Functional validation suggestions
- Genetic counseling recommendations
""")
agent.save_conversation_history("rare_disease_diagnosis.pdf")
```
### Example 2: Cancer Genomics Analysis
```python
result = agent.go("""
Analyze tumor-normal paired sequencing for cancer genomics.
Files:
- tumor_sample.vcf (somatic variants)
- tumor_rnaseq.bam (gene expression)
- tumor_cnv.seg (copy number variants)
Analysis:
1. Identify driver mutations:
- Known cancer genes (COSMIC, OncoKB)
- Recurrent hotspot mutations
- Truncating mutations in tumor suppressors
2. Analyze mutational signatures:
- Decompose signatures (COSMIC signatures)
- Identify mutagenic processes
3. Copy number analysis:
- Identify amplifications and deletions
- Focal vs. arm-level events
- Assess oncogene amplifications and TSG deletions
4. Gene expression analysis:
- Identify outlier gene expression
- Fusion transcript detection
- Pathway dysregulation
5. Therapeutic implications:
- Match alterations to FDA-approved therapies
- Identify clinical trial opportunities
- Predict response to targeted therapies
6. Generate precision oncology report
""")
```
### Example 3: Pharmacogenomics
```python
result = agent.go("""
Generate pharmacogenomics report for patient genotype data.
VCF file: patient_pgx.vcf
Analyze variants affecting drug metabolism:
**CYP450 genes:**
- CYP2D6 (affects ~25% of drugs)
- CYP2C19 (clopidogrel, PPIs, antidepressants)
- CYP2C9 (warfarin, NSAIDs)
- CYP3A5 (tacrolimus, immunosuppressants)
**Drug transporter genes:**
- SLCO1B1 (statin myopathy risk)
- ABCB1 (P-glycoprotein)
**Drug targets:**
- VKORC1 (warfarin dosing)
- DPYD (fluoropyrimidine toxicity)
- TPMT (thiopurine toxicity)
For each gene:
1. Determine diplotype (*1/*1, *1/*2, etc.)
2. Assign metabolizer phenotype (PM, IM, NM, RM, UM)
3. Provide dosing recommendations using CPIC/PharmGKB guidelines
4. Flag high-risk drug-gene interactions
5. Suggest alternative medications if needed
Generate patient-friendly report with actionable recommendations.
""")
```
---
## Protein Structure and Function
### Example 1: AlphaFold Structure Analysis
```python
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
result = agent.go("""
Analyze AlphaFold structure prediction for novel protein.
Protein: Hypothetical protein ABC123 (UniProt: Q9XYZ1)
Tasks:
1. Retrieve AlphaFold structure from database
2. Assess prediction quality:
- pLDDT scores per residue
- Identify high-confidence regions (pLDDT > 90)
- Flag low-confidence regions (pLDDT < 50)
3. Structural analysis:
- Identify domains using structural alignment
- Predict fold family
- Identify secondary structure elements
4. Functional prediction:
- Search for structural homologs in PDB
- Identify conserved functional sites
- Predict binding pockets
- Suggest possible ligands/substrates
5. Variant impact analysis:
- Map disease-associated variants to structure
- Predict structural consequences
- Identify variants affecting binding sites
6. Generate PyMOL visualization scripts highlighting key features
""")
agent.save_conversation_history("alphafold_analysis.pdf")
```
### Example 2: Protein-Protein Interaction Prediction
```python
result = agent.go("""
Predict and analyze protein-protein interactions for autophagy pathway.
Query proteins: ATG5, ATG12, ATG16L1
Analysis:
1. Retrieve known interactions from:
- STRING database
- BioGRID
- IntAct
- Literature mining
2. Predict novel interactions using:
- Structural modeling (AlphaFold-Multimer)
- Coexpression analysis
- Phylogenetic profiling
3. Analyze interaction interfaces:
- Identify binding residues
- Assess interface properties (area, hydrophobicity)
- Predict binding affinity
4. Functional analysis:
- Map interactions to autophagy pathway steps
- Identify regulatory interactions
- Predict complex stoichiometry
5. Therapeutic implications:
- Identify druggable interfaces
- Suggest peptide inhibitors
- Design disruption strategies
Generate network visualization and interaction details.
""")
```
---
## Literature and Knowledge Synthesis
### Example 1: Systematic Literature Review
```python
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
result = agent.go("""
Perform systematic literature review on CRISPR base editing applications.
Search query: "CRISPR base editing" OR "base editor" OR "CBE" OR "ABE"
Date range: 2016-2025
Tasks:
1. Search PubMed and retrieve relevant abstracts
2. Filter for original research articles
3. Extract key information:
- Base editor type (CBE, ABE, dual)
- Target organism/cell type
- Application (disease model, therapy, crop improvement)
- Editing efficiency
- Off-target assessment
4. Categorize applications:
- Therapeutic applications (by disease)
- Agricultural applications
- Basic research
5. Analyze trends:
- Publications over time
- Most studied diseases
- Evolution of base editor technology
6. Synthesize findings:
- Clinical trial status
- Remaining challenges
- Future directions
Generate comprehensive review document with citation statistics.
""")
agent.save_conversation_history("crispr_base_editing_review.pdf")
```
### Example 2: Gene Function Synthesis
```python
result = agent.go("""
Synthesize knowledge about gene function from multiple sources.
Target gene: PARK7 (DJ-1)
Integrate information from:
1. **Genetic databases:**
- NCBI Gene
- UniProt
- OMIM
2. **Expression data:**
- GTEx tissue expression
- Human Protein Atlas
- Single-cell expression atlases
3. **Functional data:**
- GO annotations
- KEGG pathways
- Reactome
- Protein interactions (STRING)
4. **Disease associations:**
- ClinVar variants
- GWAS catalog
- Disease databases (DisGeNET)
5. **Literature:**
- PubMed abstracts
- Key mechanistic studies
- Review articles
Synthesize into comprehensive gene report:
- Molecular function
- Biological processes
- Cellular localization
- Tissue distribution
- Disease associations
- Known drug targets/inhibitors
- Unresolved questions
Generate structured summary suitable for research planning.
""")
```
---
## Multi-Omics Integration
### Example 1: Multi-Omics Disease Analysis
```python
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
result = agent.go("""
Integrate multi-omics data to understand disease mechanism.
Disease: Alzheimer's disease
Data types:
- Genomics: GWAS summary statistics (gwas_ad.txt)
- Transcriptomics: Brain RNA-seq (controls vs AD, rnaseq_data.csv)
- Proteomics: CSF proteomics (proteomics_csf.csv)
- Metabolomics: Plasma metabolomics (metabolomics_plasma.csv)
- Epigenomics: Brain methylation array (methylation_data.csv)
Integration workflow:
1. Analyze each omics layer independently:
- Identify significantly altered features
- Perform pathway enrichment
2. Cross-omics correlation:
- Correlate gene expression with protein levels
- Link genetic variants to expression (eQTL)
- Associate methylation with gene expression
- Connect proteins to metabolites
3. Network analysis:
- Build multi-omics network
- Identify key hub genes/proteins
- Detect disease modules
4. Causal inference:
- Prioritize drivers vs. consequences
- Identify therapeutic targets
- Predict drug mechanisms
5. Generate integrative model of AD pathogenesis
Provide visualization and therapeutic target recommendations.
""")
agent.save_conversation_history("ad_multiomics_analysis.pdf")
```
### Example 2: Systems Biology Modeling
```python
result = agent.go("""
Build systems biology model of metabolic pathway.
Pathway: Glycolysis
Data sources:
- Enzyme kinetics (BRENDA database)
- Metabolite concentrations (literature)
- Gene expression (tissue-specific, GTEx)
- Flux measurements (C13 labeling studies)
Modeling tasks:
1. Construct pathway model:
- Define reactions and stoichiometry
- Parameterize enzyme kinetics (Km, Vmax, Ki)
- Set initial metabolite concentrations
2. Simulate pathway dynamics:
- Steady-state analysis
- Time-course simulations
- Sensitivity analysis
3. Constraint-based modeling:
- Flux balance analysis (FBA)
- Identify bottleneck reactions
- Predict metabolic engineering strategies
4. Integrate with gene expression:
- Tissue-specific model predictions
- Disease vs. normal comparisons
5. Therapeutic predictions:
- Enzyme inhibition effects
- Metabolic rescue strategies
- Drug target identification
Generate model in SBML format and simulation results.
""")
```
---
## Best Practices for Task Formulation
### 1. Be Specific and Detailed
**Poor:**
```python
agent.go("Analyze this RNA-seq data")
```
**Good:**
```python
agent.go("""
Analyze bulk RNA-seq data from cancer vs. normal samples.
Files: cancer_rnaseq.csv (TPM values, 50 cancer, 50 normal)
Tasks:
1. Differential expression (DESeq2, padj < 0.05, |log2FC| > 1)
2. Pathway enrichment (KEGG, Reactome)
3. Generate volcano plot and top DE gene heatmap
""")
```
### 2. Include File Paths and Formats
Always specify:
- Exact file paths
- File formats (VCF, BAM, CSV, H5AD, etc.)
- Data structure (columns, sample IDs)
### 3. Set Clear Success Criteria
Define thresholds and cutoffs:
- Statistical significance (P < 0.05, FDR < 0.1)
- Fold change thresholds
- Quality filters
- Expected outputs
### 4. Request Visualizations
Explicitly ask for plots:
- Volcano plots, MA plots
- Heatmaps, PCA plots
- Network diagrams
- Manhattan plots
### 5. Specify Biological Context
Include:
- Organism (human, mouse, etc.)
- Tissue/cell type
- Disease/condition
- Treatment details
### 6. Request Interpretations
Ask agent to:
- Interpret biological significance
- Suggest follow-up experiments
- Identify limitations
- Provide literature context
---
## Common Patterns
### Data Quality Control
```python
"""
Before analysis, perform quality control:
1. Check for missing values
2. Assess data distributions
3. Identify outliers
4. Generate QC report
Only proceed with analysis if data passes QC.
"""
```
### Iterative Refinement
```python
"""
Perform analysis in stages:
1. Initial exploratory analysis
2. Based on results, refine parameters
3. Focus on interesting findings
4. Generate final report
Show intermediate results for each stage.
"""
```
### Reproducibility
```python
"""
Ensure reproducibility:
1. Set random seeds where applicable
2. Log all parameters used
3. Save intermediate files
4. Export environment info (package versions)
5. Generate methods section for paper
"""
```
These examples demonstrate the breadth of biomedical tasks biomni can handle. Adapt the patterns to your specific research questions, and always include sufficient detail for the agent to execute autonomously.

View File

@@ -0,0 +1,370 @@
#!/usr/bin/env python3
"""
Enhanced PDF report generation for biomni conversation histories.
This script provides additional customization options for biomni reports:
- Custom styling and branding
- Formatted code blocks
- Section organization
- Metadata inclusion
- Export format options (PDF, HTML, Markdown)
Usage:
python generate_report.py --input conversation.json --output report.pdf
python generate_report.py --agent-object agent --output report.pdf --format html
"""
import argparse
import json
from pathlib import Path
from typing import Dict, List, Optional, Any
from datetime import datetime
def format_conversation_history(
messages: List[Dict[str, Any]],
include_metadata: bool = True,
include_code: bool = True,
include_timestamps: bool = False
) -> str:
"""
Format conversation history into structured markdown.
Args:
messages: List of conversation message dictionaries
include_metadata: Include metadata section
include_code: Include code blocks
include_timestamps: Include message timestamps
Returns:
Formatted markdown string
"""
sections = []
# Header
sections.append("# Biomni Analysis Report\n")
# Metadata
if include_metadata:
sections.append("## Metadata\n")
sections.append(f"- **Generated**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
sections.append(f"- **Number of interactions**: {len(messages)}")
sections.append("\n---\n")
# Process messages
sections.append("## Analysis\n")
for i, msg in enumerate(messages, 1):
role = msg.get('role', 'unknown')
content = msg.get('content', '')
if role == 'user':
sections.append(f"### Task {i // 2 + 1}\n")
sections.append(f"**Query:**\n```\n{content}\n```\n")
elif role == 'assistant':
sections.append(f"**Response:**\n")
# Check if content contains code
if include_code and ('```' in content or 'import ' in content):
# Attempt to separate text and code
parts = content.split('```')
for j, part in enumerate(parts):
if j % 2 == 0:
# Text content
if part.strip():
sections.append(f"{part.strip()}\n")
else:
# Code content
# Check if language is specified
lines = part.split('\n', 1)
if len(lines) > 1 and lines[0].strip() in ['python', 'r', 'bash', 'sql']:
lang = lines[0].strip()
code = lines[1]
else:
lang = 'python' # Default to python
code = part
sections.append(f"```{lang}\n{code}\n```\n")
else:
sections.append(f"{content}\n")
sections.append("\n---\n")
return '\n'.join(sections)
def markdown_to_html(markdown_content: str, title: str = "Biomni Report") -> str:
"""
Convert markdown to styled HTML.
Args:
markdown_content: Markdown string
title: HTML page title
Returns:
HTML string
"""
# Simple markdown to HTML conversion
# For production use, consider using a library like markdown or mistune
html_template = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{title}</title>
<style>
body {{
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
line-height: 1.6;
max-width: 900px;
margin: 0 auto;
padding: 20px;
color: #333;
}}
h1 {{
color: #2c3e50;
border-bottom: 3px solid #3498db;
padding-bottom: 10px;
}}
h2 {{
color: #34495e;
margin-top: 30px;
border-bottom: 2px solid #95a5a6;
padding-bottom: 5px;
}}
h3 {{
color: #555;
}}
code {{
background-color: #f4f4f4;
padding: 2px 6px;
border-radius: 3px;
font-family: 'Monaco', 'Menlo', 'Courier New', monospace;
}}
pre {{
background-color: #f8f8f8;
border: 1px solid #ddd;
border-radius: 5px;
padding: 15px;
overflow-x: auto;
}}
pre code {{
background-color: transparent;
padding: 0;
}}
hr {{
border: none;
border-top: 1px solid #ddd;
margin: 30px 0;
}}
.metadata {{
background-color: #ecf0f1;
padding: 15px;
border-radius: 5px;
margin-bottom: 20px;
}}
.task {{
background-color: #e8f4f8;
padding: 10px;
border-left: 4px solid #3498db;
margin: 20px 0;
}}
.footer {{
margin-top: 50px;
text-align: center;
color: #7f8c8d;
font-size: 0.9em;
}}
</style>
</head>
<body>
<div class="content">
{markdown_to_html_simple(markdown_content)}
</div>
<div class="footer">
<p>Generated with Biomni | Stanford SNAP Lab</p>
<p><a href="https://github.com/snap-stanford/biomni">github.com/snap-stanford/biomni</a></p>
</div>
</body>
</html>
"""
return html_template
def markdown_to_html_simple(md: str) -> str:
"""Simple markdown to HTML converter (basic implementation)."""
lines = md.split('\n')
html_lines = []
in_code_block = False
in_list = False
for line in lines:
# Code blocks
if line.startswith('```'):
if in_code_block:
html_lines.append('</code></pre>')
in_code_block = False
else:
lang = line[3:].strip()
html_lines.append(f'<pre><code class="language-{lang}">')
in_code_block = True
continue
if in_code_block:
html_lines.append(line)
continue
# Headers
if line.startswith('# '):
html_lines.append(f'<h1>{line[2:]}</h1>')
elif line.startswith('## '):
html_lines.append(f'<h2>{line[3:]}</h2>')
elif line.startswith('### '):
html_lines.append(f'<h3>{line[4:]}</h3>')
# Lists
elif line.startswith('- '):
if not in_list:
html_lines.append('<ul>')
in_list = True
html_lines.append(f'<li>{line[2:]}</li>')
else:
if in_list:
html_lines.append('</ul>')
in_list = False
# Horizontal rule
if line.strip() == '---':
html_lines.append('<hr>')
# Bold
elif '**' in line:
line = line.replace('**', '<strong>', 1).replace('**', '</strong>', 1)
html_lines.append(f'<p>{line}</p>')
# Regular paragraph
elif line.strip():
html_lines.append(f'<p>{line}</p>')
else:
html_lines.append('<br>')
if in_list:
html_lines.append('</ul>')
return '\n'.join(html_lines)
def generate_report(
conversation_data: Dict[str, Any],
output_path: Path,
format: str = 'markdown',
title: Optional[str] = None
):
"""
Generate formatted report from conversation data.
Args:
conversation_data: Conversation history dictionary
output_path: Output file path
format: Output format ('markdown', 'html', or 'pdf')
title: Report title
"""
messages = conversation_data.get('messages', [])
if not title:
title = f"Biomni Analysis - {datetime.now().strftime('%Y-%m-%d')}"
# Generate markdown
markdown_content = format_conversation_history(messages)
if format == 'markdown':
output_path.write_text(markdown_content)
print(f"✓ Markdown report saved to {output_path}")
elif format == 'html':
html_content = markdown_to_html(markdown_content, title)
output_path.write_text(html_content)
print(f"✓ HTML report saved to {output_path}")
elif format == 'pdf':
# For PDF generation, we'd typically use a library like weasyprint or reportlab
# This is a placeholder implementation
print("PDF generation requires additional dependencies (weasyprint or reportlab)")
print("Falling back to HTML format...")
html_path = output_path.with_suffix('.html')
html_content = markdown_to_html(markdown_content, title)
html_path.write_text(html_content)
print(f"✓ HTML report saved to {html_path}")
print(" To convert to PDF:")
print(f" 1. Install weasyprint: pip install weasyprint")
print(f" 2. Run: weasyprint {html_path} {output_path}")
else:
raise ValueError(f"Unsupported format: {format}")
def main():
"""Main entry point for CLI usage."""
parser = argparse.ArgumentParser(
description="Generate enhanced reports from biomni conversation histories"
)
parser.add_argument(
'--input',
type=Path,
required=True,
help='Input conversation history JSON file'
)
parser.add_argument(
'--output',
type=Path,
required=True,
help='Output report file path'
)
parser.add_argument(
'--format',
choices=['markdown', 'html', 'pdf'],
default='markdown',
help='Output format (default: markdown)'
)
parser.add_argument(
'--title',
type=str,
help='Report title (optional)'
)
args = parser.parse_args()
# Load conversation data
try:
with open(args.input, 'r') as f:
conversation_data = json.load(f)
except FileNotFoundError:
print(f"❌ Input file not found: {args.input}")
return 1
except json.JSONDecodeError:
print(f"❌ Invalid JSON in input file: {args.input}")
return 1
# Generate report
try:
generate_report(
conversation_data,
args.output,
format=args.format,
title=args.title
)
return 0
except Exception as e:
print(f"❌ Error generating report: {e}")
return 1
if __name__ == '__main__':
import sys
sys.exit(main())

View File

@@ -0,0 +1,355 @@
#!/usr/bin/env python3
"""
Interactive setup script for biomni environment configuration.
This script helps users set up:
1. Conda environment with required dependencies
2. API keys for LLM providers
3. Data lake directory configuration
4. MCP server setup (optional)
Usage:
python setup_environment.py
"""
import os
import sys
import subprocess
from pathlib import Path
from typing import Dict, Optional
def check_conda_installed() -> bool:
"""Check if conda is available in the system."""
try:
subprocess.run(
['conda', '--version'],
capture_output=True,
check=True
)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
def setup_conda_environment():
"""Guide user through conda environment setup."""
print("\n=== Conda Environment Setup ===")
if not check_conda_installed():
print("❌ Conda not found. Please install Miniconda or Anaconda:")
print(" https://docs.conda.io/en/latest/miniconda.html")
return False
print("✓ Conda is installed")
# Check if biomni_e1 environment exists
result = subprocess.run(
['conda', 'env', 'list'],
capture_output=True,
text=True
)
if 'biomni_e1' in result.stdout:
print("✓ biomni_e1 environment already exists")
return True
print("\nCreating biomni_e1 conda environment...")
print("This will install Python 3.10 and required dependencies.")
response = input("Proceed? [y/N]: ").strip().lower()
if response != 'y':
print("Skipping conda environment setup")
return False
try:
# Create conda environment
subprocess.run(
['conda', 'create', '-n', 'biomni_e1', 'python=3.10', '-y'],
check=True
)
print("\n✓ Conda environment created successfully")
print("\nTo activate: conda activate biomni_e1")
print("Then install biomni: pip install biomni --upgrade")
return True
except subprocess.CalledProcessError as e:
print(f"❌ Failed to create conda environment: {e}")
return False
def setup_api_keys() -> Dict[str, str]:
"""Interactive API key configuration."""
print("\n=== API Key Configuration ===")
print("Biomni supports multiple LLM providers.")
print("At minimum, configure one provider.")
api_keys = {}
# Anthropic (recommended)
print("\n1. Anthropic Claude (Recommended)")
print(" Get your API key from: https://console.anthropic.com/")
anthropic_key = input(" Enter ANTHROPIC_API_KEY (or press Enter to skip): ").strip()
if anthropic_key:
api_keys['ANTHROPIC_API_KEY'] = anthropic_key
# OpenAI
print("\n2. OpenAI")
print(" Get your API key from: https://platform.openai.com/api-keys")
openai_key = input(" Enter OPENAI_API_KEY (or press Enter to skip): ").strip()
if openai_key:
api_keys['OPENAI_API_KEY'] = openai_key
# Google Gemini
print("\n3. Google Gemini")
print(" Get your API key from: https://makersuite.google.com/app/apikey")
google_key = input(" Enter GOOGLE_API_KEY (or press Enter to skip): ").strip()
if google_key:
api_keys['GOOGLE_API_KEY'] = google_key
# Groq
print("\n4. Groq")
print(" Get your API key from: https://console.groq.com/keys")
groq_key = input(" Enter GROQ_API_KEY (or press Enter to skip): ").strip()
if groq_key:
api_keys['GROQ_API_KEY'] = groq_key
if not api_keys:
print("\n⚠️ No API keys configured. You'll need at least one to use biomni.")
return {}
return api_keys
def save_api_keys(api_keys: Dict[str, str], method: str = 'env_file'):
"""Save API keys using specified method."""
if method == 'env_file':
env_file = Path.cwd() / '.env'
# Read existing .env if present
existing_vars = {}
if env_file.exists():
with open(env_file, 'r') as f:
for line in f:
line = line.strip()
if line and not line.startswith('#'):
if '=' in line:
key, val = line.split('=', 1)
existing_vars[key.strip()] = val.strip()
# Update with new keys
existing_vars.update(api_keys)
# Write to .env
with open(env_file, 'w') as f:
f.write("# Biomni API Keys\n")
f.write(f"# Generated by setup_environment.py\n\n")
for key, value in existing_vars.items():
f.write(f"{key}={value}\n")
print(f"\n✓ API keys saved to {env_file}")
print(" Keys will be loaded automatically when biomni runs in this directory")
elif method == 'shell_export':
shell_file = Path.home() / '.bashrc' # or .zshrc for zsh users
print("\n📋 Add these lines to your shell configuration:")
for key, value in api_keys.items():
print(f" export {key}=\"{value}\"")
print(f"\nThen run: source {shell_file}")
def setup_data_directory() -> Optional[Path]:
"""Configure biomni data lake directory."""
print("\n=== Data Lake Configuration ===")
print("Biomni requires ~11GB for integrated biomedical databases.")
default_path = Path.cwd() / 'biomni_data'
print(f"\nDefault location: {default_path}")
response = input("Use default location? [Y/n]: ").strip().lower()
if response == 'n':
custom_path = input("Enter custom path: ").strip()
data_path = Path(custom_path).expanduser().resolve()
else:
data_path = default_path
# Create directory if it doesn't exist
data_path.mkdir(parents=True, exist_ok=True)
print(f"\n✓ Data directory configured: {data_path}")
print(" Data will be downloaded automatically on first use")
return data_path
def test_installation(data_path: Path):
"""Test biomni installation with a simple query."""
print("\n=== Installation Test ===")
print("Testing biomni installation with a simple query...")
response = input("Run test? [Y/n]: ").strip().lower()
if response == 'n':
print("Skipping test")
return
test_code = f'''
import os
from biomni.agent import A1
# Use environment variables for API keys
agent = A1(path='{data_path}', llm='claude-sonnet-4-20250514')
# Simple test query
result = agent.go("What is the primary function of the TP53 gene?")
print("Test result:", result)
'''
test_file = Path('test_biomni.py')
with open(test_file, 'w') as f:
f.write(test_code)
print(f"\nTest script created: {test_file}")
print("Running test...")
try:
subprocess.run([sys.executable, str(test_file)], check=True)
print("\n✓ Test completed successfully!")
test_file.unlink() # Clean up test file
except subprocess.CalledProcessError:
print("\n❌ Test failed. Check your configuration.")
print(f" Test script saved as {test_file} for debugging")
def generate_example_script(data_path: Path):
"""Generate example usage script."""
example_code = f'''#!/usr/bin/env python3
"""
Example biomni usage script
This demonstrates basic biomni usage patterns.
Modify this script for your research tasks.
"""
from biomni.agent import A1
# Initialize agent
agent = A1(
path='{data_path}',
llm='claude-sonnet-4-20250514' # or your preferred LLM
)
# Example 1: Simple gene query
print("Example 1: Gene function query")
result = agent.go("""
What are the main functions of the BRCA1 gene?
Include information about:
- Molecular function
- Associated diseases
- Protein interactions
""")
print(result)
print("-" * 80)
# Example 2: Data analysis
print("\\nExample 2: GWAS analysis")
result = agent.go("""
Explain how to analyze GWAS summary statistics for:
1. Identifying genome-wide significant variants
2. Mapping variants to genes
3. Pathway enrichment analysis
""")
print(result)
# Save conversation history
agent.save_conversation_history("example_results.pdf")
print("\\nResults saved to example_results.pdf")
'''
example_file = Path('example_biomni_usage.py')
with open(example_file, 'w') as f:
f.write(example_code)
print(f"\n✓ Example script created: {example_file}")
def main():
"""Main setup workflow."""
print("=" * 60)
print("Biomni Environment Setup")
print("=" * 60)
# Step 1: Conda environment
conda_success = setup_conda_environment()
if conda_success:
print("\n⚠️ Remember to activate the environment:")
print(" conda activate biomni_e1")
print(" pip install biomni --upgrade")
# Step 2: API keys
api_keys = setup_api_keys()
if api_keys:
print("\nHow would you like to store API keys?")
print("1. .env file (recommended, local to this directory)")
print("2. Shell export (add to .bashrc/.zshrc)")
choice = input("Choose [1/2]: ").strip()
if choice == '2':
save_api_keys(api_keys, method='shell_export')
else:
save_api_keys(api_keys, method='env_file')
# Step 3: Data directory
data_path = setup_data_directory()
# Step 4: Generate example script
if data_path:
generate_example_script(data_path)
# Step 5: Test installation (optional)
if api_keys and data_path:
test_installation(data_path)
# Summary
print("\n" + "=" * 60)
print("Setup Complete!")
print("=" * 60)
if conda_success:
print("✓ Conda environment: biomni_e1")
if api_keys:
print(f"✓ API keys configured: {', '.join(api_keys.keys())}")
if data_path:
print(f"✓ Data directory: {data_path}")
print("\nNext steps:")
if conda_success:
print("1. conda activate biomni_e1")
print("2. pip install biomni --upgrade")
print("3. Run example_biomni_usage.py to test")
else:
print("1. Install conda/miniconda")
print("2. Run this script again")
print("\nFor documentation, see:")
print(" - GitHub: https://github.com/snap-stanford/biomni")
print(" - Paper: https://www.biorxiv.org/content/10.1101/2025.05.30.656746v1")
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\n\nSetup interrupted by user")
sys.exit(1)
except Exception as e:
print(f"\n❌ Error during setup: {e}")
sys.exit(1)