Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,97 @@
#!/usr/bin/env python3
"""
Basic GRN inference example using Arboreto.
This script demonstrates the standard workflow for inferring gene regulatory
networks from expression data using GRNBoost2.
Usage:
python basic_grn_inference.py <expression_file> <output_file> [--tf-file TF_FILE] [--seed SEED]
Arguments:
expression_file: Path to expression matrix (TSV format, genes as columns)
output_file: Path for output network (TSV format)
--tf-file: Optional path to transcription factors file (one per line)
--seed: Random seed for reproducibility (default: 777)
"""
import argparse
import pandas as pd
from arboreto.algo import grnboost2
from arboreto.utils import load_tf_names
def run_grn_inference(expression_file, output_file, tf_file=None, seed=777):
"""
Run GRN inference using GRNBoost2.
Args:
expression_file: Path to expression matrix TSV file
output_file: Path for output network file
tf_file: Optional path to TF names file
seed: Random seed for reproducibility
"""
print(f"Loading expression data from {expression_file}...")
expression_data = pd.read_csv(expression_file, sep='\t')
print(f"Expression matrix shape: {expression_data.shape}")
print(f"Number of genes: {expression_data.shape[1]}")
print(f"Number of observations: {expression_data.shape[0]}")
# Load TF names if provided
tf_names = 'all'
if tf_file:
print(f"Loading transcription factors from {tf_file}...")
tf_names = load_tf_names(tf_file)
print(f"Number of TFs: {len(tf_names)}")
# Run GRN inference
print(f"Running GRNBoost2 with seed={seed}...")
network = grnboost2(
expression_data=expression_data,
tf_names=tf_names,
seed=seed,
verbose=True
)
# Save results
print(f"Saving network to {output_file}...")
network.to_csv(output_file, sep='\t', index=False, header=False)
print(f"Done! Network contains {len(network)} regulatory links.")
print(f"\nTop 10 regulatory links:")
print(network.head(10).to_string(index=False))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Infer gene regulatory network using GRNBoost2'
)
parser.add_argument(
'expression_file',
help='Path to expression matrix (TSV format, genes as columns)'
)
parser.add_argument(
'output_file',
help='Path for output network (TSV format)'
)
parser.add_argument(
'--tf-file',
help='Path to transcription factors file (one per line)',
default=None
)
parser.add_argument(
'--seed',
help='Random seed for reproducibility (default: 777)',
type=int,
default=777
)
args = parser.parse_args()
run_grn_inference(
expression_file=args.expression_file,
output_file=args.output_file,
tf_file=args.tf_file,
seed=args.seed
)