Initial commit
This commit is contained in:
138
skills/arboreto/references/algorithms.md
Normal file
138
skills/arboreto/references/algorithms.md
Normal file
@@ -0,0 +1,138 @@
|
||||
# GRN Inference Algorithms
|
||||
|
||||
Arboreto provides two algorithms for gene regulatory network (GRN) inference, both based on the multiple regression approach.
|
||||
|
||||
## Algorithm Overview
|
||||
|
||||
Both algorithms follow the same inference strategy:
|
||||
1. For each target gene in the dataset, train a regression model
|
||||
2. Identify the most important features (potential regulators) from the model
|
||||
3. Emit these features as candidate regulators with importance scores
|
||||
|
||||
The key difference is **computational efficiency** and the underlying regression method.
|
||||
|
||||
## GRNBoost2 (Recommended)
|
||||
|
||||
**Purpose**: Fast GRN inference for large-scale datasets using gradient boosting.
|
||||
|
||||
### When to Use
|
||||
- **Large datasets**: Tens of thousands of observations (e.g., single-cell RNA-seq)
|
||||
- **Time-constrained analysis**: Need faster results than GENIE3
|
||||
- **Default choice**: GRNBoost2 is the flagship algorithm and recommended for most use cases
|
||||
|
||||
### Technical Details
|
||||
- **Method**: Stochastic gradient boosting with early-stopping regularization
|
||||
- **Performance**: Significantly faster than GENIE3 on large datasets
|
||||
- **Output**: Same format as GENIE3 (TF-target-importance triplets)
|
||||
|
||||
### Usage
|
||||
```python
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
seed=42 # For reproducibility
|
||||
)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
```python
|
||||
grnboost2(
|
||||
expression_data, # Required: pandas DataFrame or numpy array
|
||||
gene_names=None, # Required for numpy arrays
|
||||
tf_names='all', # List of TF names or 'all'
|
||||
verbose=False, # Print progress messages
|
||||
client_or_address='local', # Dask client or scheduler address
|
||||
seed=None # Random seed for reproducibility
|
||||
)
|
||||
```
|
||||
|
||||
## GENIE3
|
||||
|
||||
**Purpose**: Classic Random Forest-based GRN inference, serving as the conceptual blueprint.
|
||||
|
||||
### When to Use
|
||||
- **Smaller datasets**: When dataset size allows for longer computation
|
||||
- **Comparison studies**: When comparing with published GENIE3 results
|
||||
- **Validation**: To validate GRNBoost2 results
|
||||
|
||||
### Technical Details
|
||||
- **Method**: Random Forest or ExtraTrees regression
|
||||
- **Foundation**: Original multiple regression GRN inference strategy
|
||||
- **Trade-off**: More computationally expensive but well-established
|
||||
|
||||
### Usage
|
||||
```python
|
||||
from arboreto.algo import genie3
|
||||
|
||||
network = genie3(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
seed=42
|
||||
)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
```python
|
||||
genie3(
|
||||
expression_data, # Required: pandas DataFrame or numpy array
|
||||
gene_names=None, # Required for numpy arrays
|
||||
tf_names='all', # List of TF names or 'all'
|
||||
verbose=False, # Print progress messages
|
||||
client_or_address='local', # Dask client or scheduler address
|
||||
seed=None # Random seed for reproducibility
|
||||
)
|
||||
```
|
||||
|
||||
## Algorithm Comparison
|
||||
|
||||
| Feature | GRNBoost2 | GENIE3 |
|
||||
|---------|-----------|--------|
|
||||
| **Speed** | Fast (optimized for large data) | Slower |
|
||||
| **Method** | Gradient boosting | Random Forest |
|
||||
| **Best for** | Large-scale data (10k+ observations) | Small-medium datasets |
|
||||
| **Output format** | Same | Same |
|
||||
| **Inference strategy** | Multiple regression | Multiple regression |
|
||||
| **Recommended** | Yes (default choice) | For comparison/validation |
|
||||
|
||||
## Advanced: Custom Regressor Parameters
|
||||
|
||||
For advanced users, pass custom scikit-learn regressor parameters:
|
||||
|
||||
```python
|
||||
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
|
||||
|
||||
# Custom GRNBoost2 parameters
|
||||
custom_grnboost2 = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
regressor_type='GBM',
|
||||
regressor_kwargs={
|
||||
'n_estimators': 100,
|
||||
'max_depth': 5,
|
||||
'learning_rate': 0.1
|
||||
}
|
||||
)
|
||||
|
||||
# Custom GENIE3 parameters
|
||||
custom_genie3 = genie3(
|
||||
expression_data=expression_matrix,
|
||||
regressor_type='RF',
|
||||
regressor_kwargs={
|
||||
'n_estimators': 1000,
|
||||
'max_features': 'sqrt'
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Choosing the Right Algorithm
|
||||
|
||||
**Decision guide**:
|
||||
|
||||
1. **Start with GRNBoost2** - It's faster and handles large datasets better
|
||||
2. **Use GENIE3 if**:
|
||||
- Comparing with existing GENIE3 publications
|
||||
- Dataset is small-medium sized
|
||||
- Validating GRNBoost2 results
|
||||
|
||||
Both algorithms produce comparable regulatory networks with the same output format, making them interchangeable for most analyses.
|
||||
151
skills/arboreto/references/basic_inference.md
Normal file
151
skills/arboreto/references/basic_inference.md
Normal file
@@ -0,0 +1,151 @@
|
||||
# Basic GRN Inference with Arboreto
|
||||
|
||||
## Input Data Requirements
|
||||
|
||||
Arboreto requires gene expression data in one of two formats:
|
||||
|
||||
### Pandas DataFrame (Recommended)
|
||||
- **Rows**: Observations (cells, samples, conditions)
|
||||
- **Columns**: Genes (with gene names as column headers)
|
||||
- **Format**: Numeric expression values
|
||||
|
||||
Example:
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
# Load expression matrix with genes as columns
|
||||
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
||||
# Columns: ['gene1', 'gene2', 'gene3', ...]
|
||||
# Rows: observation data
|
||||
```
|
||||
|
||||
### NumPy Array
|
||||
- **Shape**: (observations, genes)
|
||||
- **Requirement**: Separately provide gene names list matching column order
|
||||
|
||||
Example:
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
expression_matrix = np.genfromtxt('expression_data.tsv', delimiter='\t', skip_header=1)
|
||||
with open('expression_data.tsv') as f:
|
||||
gene_names = [gene.strip() for gene in f.readline().split('\t')]
|
||||
|
||||
assert expression_matrix.shape[1] == len(gene_names)
|
||||
```
|
||||
|
||||
## Transcription Factors (TFs)
|
||||
|
||||
Optionally provide a list of transcription factor names to restrict regulatory inference:
|
||||
|
||||
```python
|
||||
from arboreto.utils import load_tf_names
|
||||
|
||||
# Load from file (one TF per line)
|
||||
tf_names = load_tf_names('transcription_factors.txt')
|
||||
|
||||
# Or define directly
|
||||
tf_names = ['TF1', 'TF2', 'TF3']
|
||||
```
|
||||
|
||||
If not provided, all genes are considered potential regulators.
|
||||
|
||||
## Basic Inference Workflow
|
||||
|
||||
### Using Pandas DataFrame
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
from arboreto.utils import load_tf_names
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Load expression data
|
||||
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
||||
|
||||
# Load transcription factors (optional)
|
||||
tf_names = load_tf_names('tf_list.txt')
|
||||
|
||||
# Run GRN inference
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names # Optional
|
||||
)
|
||||
|
||||
# Save results
|
||||
network.to_csv('network_output.tsv', sep='\t', index=False, header=False)
|
||||
```
|
||||
|
||||
**Critical**: The `if __name__ == '__main__':` guard is required because Dask spawns new processes internally.
|
||||
|
||||
### Using NumPy Array
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Load expression matrix
|
||||
expression_matrix = np.genfromtxt('expression_data.tsv', delimiter='\t', skip_header=1)
|
||||
|
||||
# Extract gene names from header
|
||||
with open('expression_data.tsv') as f:
|
||||
gene_names = [gene.strip() for gene in f.readline().split('\t')]
|
||||
|
||||
# Verify dimensions match
|
||||
assert expression_matrix.shape[1] == len(gene_names)
|
||||
|
||||
# Run inference with explicit gene names
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
gene_names=gene_names,
|
||||
tf_names=tf_names
|
||||
)
|
||||
|
||||
network.to_csv('network_output.tsv', sep='\t', index=False, header=False)
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
Arboreto returns a Pandas DataFrame with three columns:
|
||||
|
||||
| Column | Description |
|
||||
|--------|-------------|
|
||||
| `TF` | Transcription factor (regulator) gene name |
|
||||
| `target` | Target gene name |
|
||||
| `importance` | Regulatory importance score (higher = stronger regulation) |
|
||||
|
||||
Example output:
|
||||
```
|
||||
TF1 gene5 0.856
|
||||
TF2 gene12 0.743
|
||||
TF1 gene8 0.621
|
||||
```
|
||||
|
||||
## Setting Random Seed
|
||||
|
||||
For reproducible results, provide a seed parameter:
|
||||
|
||||
```python
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
seed=777
|
||||
)
|
||||
```
|
||||
|
||||
## Algorithm Selection
|
||||
|
||||
Use `grnboost2()` for most cases (faster, handles large datasets):
|
||||
```python
|
||||
from arboreto.algo import grnboost2
|
||||
network = grnboost2(expression_data=expression_matrix)
|
||||
```
|
||||
|
||||
Use `genie3()` for comparison or specific requirements:
|
||||
```python
|
||||
from arboreto.algo import genie3
|
||||
network = genie3(expression_data=expression_matrix)
|
||||
```
|
||||
|
||||
See `references/algorithms.md` for detailed algorithm comparison.
|
||||
242
skills/arboreto/references/distributed_computing.md
Normal file
242
skills/arboreto/references/distributed_computing.md
Normal file
@@ -0,0 +1,242 @@
|
||||
# Distributed Computing with Arboreto
|
||||
|
||||
Arboreto leverages Dask for parallelized computation, enabling efficient GRN inference from single-machine multi-core processing to multi-node cluster environments.
|
||||
|
||||
## Computation Architecture
|
||||
|
||||
GRN inference is inherently parallelizable:
|
||||
- Each target gene's regression model can be trained independently
|
||||
- Arboreto represents computation as a Dask task graph
|
||||
- Tasks are distributed across available computational resources
|
||||
|
||||
## Local Multi-Core Processing (Default)
|
||||
|
||||
By default, arboreto uses all available CPU cores on the local machine:
|
||||
|
||||
```python
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
# Automatically uses all local cores
|
||||
network = grnboost2(expression_data=expression_matrix, tf_names=tf_names)
|
||||
```
|
||||
|
||||
This is sufficient for most use cases and requires no additional configuration.
|
||||
|
||||
## Custom Local Dask Client
|
||||
|
||||
For fine-grained control over local resources, create a custom Dask client:
|
||||
|
||||
```python
|
||||
from distributed import LocalCluster, Client
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Configure local cluster
|
||||
local_cluster = LocalCluster(
|
||||
n_workers=10, # Number of worker processes
|
||||
threads_per_worker=1, # Threads per worker
|
||||
memory_limit='8GB' # Memory limit per worker
|
||||
)
|
||||
|
||||
# Create client
|
||||
custom_client = Client(local_cluster)
|
||||
|
||||
# Run inference with custom client
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=custom_client
|
||||
)
|
||||
|
||||
# Clean up
|
||||
custom_client.close()
|
||||
local_cluster.close()
|
||||
```
|
||||
|
||||
### Benefits of Custom Client
|
||||
- **Resource control**: Limit CPU and memory usage
|
||||
- **Multiple runs**: Reuse same client for different parameter sets
|
||||
- **Monitoring**: Access Dask dashboard for performance insights
|
||||
|
||||
## Multiple Inference Runs with Same Client
|
||||
|
||||
Reuse a single Dask client for multiple inference runs with different parameters:
|
||||
|
||||
```python
|
||||
from distributed import LocalCluster, Client
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Initialize client once
|
||||
local_cluster = LocalCluster(n_workers=8, threads_per_worker=1)
|
||||
client = Client(local_cluster)
|
||||
|
||||
# Run multiple inferences
|
||||
network_seed1 = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=client,
|
||||
seed=666
|
||||
)
|
||||
|
||||
network_seed2 = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=client,
|
||||
seed=777
|
||||
)
|
||||
|
||||
# Different algorithms with same client
|
||||
from arboreto.algo import genie3
|
||||
network_genie3 = genie3(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=client
|
||||
)
|
||||
|
||||
# Clean up once
|
||||
client.close()
|
||||
local_cluster.close()
|
||||
```
|
||||
|
||||
## Distributed Cluster Computing
|
||||
|
||||
For very large datasets, connect to a remote Dask distributed scheduler running on a cluster:
|
||||
|
||||
### Step 1: Set Up Dask Scheduler (on cluster head node)
|
||||
```bash
|
||||
dask-scheduler
|
||||
# Output: Scheduler at tcp://10.118.224.134:8786
|
||||
```
|
||||
|
||||
### Step 2: Start Dask Workers (on cluster compute nodes)
|
||||
```bash
|
||||
dask-worker tcp://10.118.224.134:8786
|
||||
```
|
||||
|
||||
### Step 3: Connect from Client
|
||||
```python
|
||||
from distributed import Client
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Connect to remote scheduler
|
||||
scheduler_address = 'tcp://10.118.224.134:8786'
|
||||
cluster_client = Client(scheduler_address)
|
||||
|
||||
# Run inference on cluster
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=cluster_client
|
||||
)
|
||||
|
||||
cluster_client.close()
|
||||
```
|
||||
|
||||
### Cluster Configuration Best Practices
|
||||
|
||||
**Worker configuration**:
|
||||
```bash
|
||||
dask-worker tcp://scheduler:8786 \
|
||||
--nprocs 4 \ # Number of processes per node
|
||||
--nthreads 1 \ # Threads per process
|
||||
--memory-limit 16GB # Memory per process
|
||||
```
|
||||
|
||||
**For large-scale inference**:
|
||||
- Use more workers with moderate memory rather than fewer workers with large memory
|
||||
- Set `threads_per_worker=1` to avoid GIL contention in scikit-learn
|
||||
- Monitor memory usage to prevent workers from being killed
|
||||
|
||||
## Monitoring and Debugging
|
||||
|
||||
### Dask Dashboard
|
||||
|
||||
Access the Dask dashboard for real-time monitoring:
|
||||
|
||||
```python
|
||||
from distributed import Client
|
||||
|
||||
client = Client() # Prints dashboard URL
|
||||
# Dashboard available at: http://localhost:8787/status
|
||||
```
|
||||
|
||||
The dashboard shows:
|
||||
- **Task progress**: Number of tasks completed/pending
|
||||
- **Resource usage**: CPU, memory per worker
|
||||
- **Task stream**: Real-time visualization of computation
|
||||
- **Performance**: Bottleneck identification
|
||||
|
||||
### Verbose Output
|
||||
|
||||
Enable verbose logging to track inference progress:
|
||||
|
||||
```python
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Performance Optimization Tips
|
||||
|
||||
### 1. Data Format
|
||||
- **Use Pandas DataFrame when possible**: More efficient than NumPy for Dask operations
|
||||
- **Reduce data size**: Filter low-variance genes before inference
|
||||
|
||||
### 2. Worker Configuration
|
||||
- **CPU-bound tasks**: Set `threads_per_worker=1`, increase `n_workers`
|
||||
- **Memory-bound tasks**: Increase `memory_limit` per worker
|
||||
|
||||
### 3. Cluster Setup
|
||||
- **Network**: Ensure high-bandwidth, low-latency network between nodes
|
||||
- **Storage**: Use shared filesystem or object storage for large datasets
|
||||
- **Scheduling**: Allocate dedicated nodes to avoid resource contention
|
||||
|
||||
### 4. Transcription Factor Filtering
|
||||
- **Limit TF list**: Providing specific TF names reduces computation
|
||||
```python
|
||||
# Full search (slow)
|
||||
network = grnboost2(expression_data=matrix)
|
||||
|
||||
# Filtered search (faster)
|
||||
network = grnboost2(expression_data=matrix, tf_names=known_tfs)
|
||||
```
|
||||
|
||||
## Example: Large-Scale Single-Cell Analysis
|
||||
|
||||
Complete workflow for processing single-cell RNA-seq data on a cluster:
|
||||
|
||||
```python
|
||||
from distributed import Client
|
||||
from arboreto.algo import grnboost2
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Connect to cluster
|
||||
client = Client('tcp://cluster-scheduler:8786')
|
||||
|
||||
# Load large single-cell dataset (50,000 cells x 20,000 genes)
|
||||
expression_data = pd.read_csv('scrnaseq_data.tsv', sep='\t')
|
||||
|
||||
# Load cell-type-specific TFs
|
||||
tf_names = pd.read_csv('tf_list.txt', header=None)[0].tolist()
|
||||
|
||||
# Run distributed inference
|
||||
network = grnboost2(
|
||||
expression_data=expression_data,
|
||||
tf_names=tf_names,
|
||||
client_or_address=client,
|
||||
verbose=True,
|
||||
seed=42
|
||||
)
|
||||
|
||||
# Save results
|
||||
network.to_csv('grn_results.tsv', sep='\t', index=False)
|
||||
|
||||
client.close()
|
||||
```
|
||||
|
||||
This approach enables analysis of datasets that would be impractical on a single machine.
|
||||
Reference in New Issue
Block a user