Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

237
skills/arboreto/SKILL.md Normal file
View File

@@ -0,0 +1,237 @@
---
name: arboreto
description: Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
---
# Arboreto
## Overview
Arboreto is a computational library for inferring gene regulatory networks (GRNs) from gene expression data using parallelized algorithms that scale from single machines to multi-node clusters.
**Core capability**: Identify which transcription factors (TFs) regulate which target genes based on expression patterns across observations (cells, samples, conditions).
## Quick Start
Install arboreto:
```bash
uv pip install arboreto
```
Basic GRN inference:
```python
import pandas as pd
from arboreto.algo import grnboost2
if __name__ == '__main__':
# Load expression data (genes as columns)
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
# Infer regulatory network
network = grnboost2(expression_data=expression_matrix)
# Save results (TF, target, importance)
network.to_csv('network.tsv', sep='\t', index=False, header=False)
```
**Critical**: Always use `if __name__ == '__main__':` guard because Dask spawns new processes.
## Core Capabilities
### 1. Basic GRN Inference
For standard GRN inference workflows including:
- Input data preparation (Pandas DataFrame or NumPy array)
- Running inference with GRNBoost2 or GENIE3
- Filtering by transcription factors
- Output format and interpretation
**See**: `references/basic_inference.md`
**Use the ready-to-run script**: `scripts/basic_grn_inference.py` for standard inference tasks:
```bash
python scripts/basic_grn_inference.py expression_data.tsv output_network.tsv --tf-file tfs.txt --seed 777
```
### 2. Algorithm Selection
Arboreto provides two algorithms:
**GRNBoost2 (Recommended)**:
- Fast gradient boosting-based inference
- Optimized for large datasets (10k+ observations)
- Default choice for most analyses
**GENIE3**:
- Random Forest-based inference
- Original multiple regression approach
- Use for comparison or validation
Quick comparison:
```python
from arboreto.algo import grnboost2, genie3
# Fast, recommended
network_grnboost = grnboost2(expression_data=matrix)
# Classic algorithm
network_genie3 = genie3(expression_data=matrix)
```
**For detailed algorithm comparison, parameters, and selection guidance**: `references/algorithms.md`
### 3. Distributed Computing
Scale inference from local multi-core to cluster environments:
**Local (default)** - Uses all available cores automatically:
```python
network = grnboost2(expression_data=matrix)
```
**Custom local client** - Control resources:
```python
from distributed import LocalCluster, Client
local_cluster = LocalCluster(n_workers=10, memory_limit='8GB')
client = Client(local_cluster)
network = grnboost2(expression_data=matrix, client_or_address=client)
client.close()
local_cluster.close()
```
**Cluster computing** - Connect to remote Dask scheduler:
```python
from distributed import Client
client = Client('tcp://scheduler:8786')
network = grnboost2(expression_data=matrix, client_or_address=client)
```
**For cluster setup, performance optimization, and large-scale workflows**: `references/distributed_computing.md`
## Installation
```bash
uv pip install arboreto
```
**Dependencies**: scipy, scikit-learn, numpy, pandas, dask, distributed
## Common Use Cases
### Single-Cell RNA-seq Analysis
```python
import pandas as pd
from arboreto.algo import grnboost2
if __name__ == '__main__':
# Load single-cell expression matrix (cells x genes)
sc_data = pd.read_csv('scrna_counts.tsv', sep='\t')
# Infer cell-type-specific regulatory network
network = grnboost2(expression_data=sc_data, seed=42)
# Filter high-confidence links
high_confidence = network[network['importance'] > 0.5]
high_confidence.to_csv('grn_high_confidence.tsv', sep='\t', index=False)
```
### Bulk RNA-seq with TF Filtering
```python
from arboreto.utils import load_tf_names
from arboreto.algo import grnboost2
if __name__ == '__main__':
# Load data
expression_data = pd.read_csv('rnaseq_tpm.tsv', sep='\t')
tf_names = load_tf_names('human_tfs.txt')
# Infer with TF restriction
network = grnboost2(
expression_data=expression_data,
tf_names=tf_names,
seed=123
)
network.to_csv('tf_target_network.tsv', sep='\t', index=False)
```
### Comparative Analysis (Multiple Conditions)
```python
from arboreto.algo import grnboost2
if __name__ == '__main__':
# Infer networks for different conditions
conditions = ['control', 'treatment_24h', 'treatment_48h']
for condition in conditions:
data = pd.read_csv(f'{condition}_expression.tsv', sep='\t')
network = grnboost2(expression_data=data, seed=42)
network.to_csv(f'{condition}_network.tsv', sep='\t', index=False)
```
## Output Interpretation
Arboreto returns a DataFrame with regulatory links:
| Column | Description |
|--------|-------------|
| `TF` | Transcription factor (regulator) |
| `target` | Target gene |
| `importance` | Regulatory importance score (higher = stronger) |
**Filtering strategy**:
- Top N links per target gene
- Importance threshold (e.g., > 0.5)
- Statistical significance testing (permutation tests)
## Integration with pySCENIC
Arboreto is a core component of the SCENIC pipeline for single-cell regulatory network analysis:
```python
# Step 1: Use arboreto for GRN inference
from arboreto.algo import grnboost2
network = grnboost2(expression_data=sc_data, tf_names=tf_list)
# Step 2: Use pySCENIC for regulon identification and activity scoring
# (See pySCENIC documentation for downstream analysis)
```
## Reproducibility
Always set a seed for reproducible results:
```python
network = grnboost2(expression_data=matrix, seed=777)
```
Run multiple seeds for robustness analysis:
```python
from distributed import LocalCluster, Client
if __name__ == '__main__':
client = Client(LocalCluster())
seeds = [42, 123, 777]
networks = []
for seed in seeds:
net = grnboost2(expression_data=matrix, client_or_address=client, seed=seed)
networks.append(net)
# Combine networks and filter consensus links
consensus = analyze_consensus(networks)
```
## Troubleshooting
**Memory errors**: Reduce dataset size by filtering low-variance genes or use distributed computing
**Slow performance**: Use GRNBoost2 instead of GENIE3, enable distributed client, filter TF list
**Dask errors**: Ensure `if __name__ == '__main__':` guard is present in scripts
**Empty results**: Check data format (genes as columns), verify TF names match gene names