Initial commit
This commit is contained in:
423
skills/alphafold-database/references/api_reference.md
Normal file
423
skills/alphafold-database/references/api_reference.md
Normal file
@@ -0,0 +1,423 @@
|
||||
# AlphaFold Database API Reference
|
||||
|
||||
This document provides comprehensive technical documentation for programmatic access to the AlphaFold Protein Structure Database.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [REST API Endpoints](#rest-api-endpoints)
|
||||
2. [File Access Patterns](#file-access-patterns)
|
||||
3. [Data Schemas](#data-schemas)
|
||||
4. [Google Cloud Access](#google-cloud-access)
|
||||
5. [BigQuery Schema](#bigquery-schema)
|
||||
6. [Best Practices](#best-practices)
|
||||
7. [Error Handling](#error-handling)
|
||||
8. [Rate Limiting](#rate-limiting)
|
||||
|
||||
---
|
||||
|
||||
## REST API Endpoints
|
||||
|
||||
### Base URL
|
||||
|
||||
```
|
||||
https://alphafold.ebi.ac.uk/api/
|
||||
```
|
||||
|
||||
### 1. Get Prediction by UniProt Accession
|
||||
|
||||
**Endpoint:** `/prediction/{uniprot_id}`
|
||||
|
||||
**Method:** GET
|
||||
|
||||
**Description:** Retrieve AlphaFold prediction metadata for a given UniProt accession.
|
||||
|
||||
**Parameters:**
|
||||
- `uniprot_id` (required): UniProt accession (e.g., "P00520")
|
||||
|
||||
**Example Request:**
|
||||
```bash
|
||||
curl https://alphafold.ebi.ac.uk/api/prediction/P00520
|
||||
```
|
||||
|
||||
**Example Response:**
|
||||
```json
|
||||
[
|
||||
{
|
||||
"entryId": "AF-P00520-F1",
|
||||
"gene": "ABL1",
|
||||
"uniprotAccession": "P00520",
|
||||
"uniprotId": "ABL1_HUMAN",
|
||||
"uniprotDescription": "Tyrosine-protein kinase ABL1",
|
||||
"taxId": 9606,
|
||||
"organismScientificName": "Homo sapiens",
|
||||
"uniprotStart": 1,
|
||||
"uniprotEnd": 1130,
|
||||
"uniprotSequence": "MLEICLKLVGCKSKKGLSSSSSCYLEEALQRPVASDFEPQGLSEAARWNSKENLLAGPSENDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNSLEKHSWYHGPVSRNAAEYLLSSGINGSFLVRESESSPGQRSISLRYEGRVYHYRINTASDGKLYVSSESRFNTLAELVHHHSTVADGLITTLHYPAPKRNKPTVYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAVKTLKEDTMEVEEFLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVNAVVLLYMATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTGDTYTAHAGAKFPIKWTAPESLAYNKFSIKSDVWAFGVLLWEIATYGMSPYPGIDLSQVYELLEKDYRMERPEGCPEKVYELMRACWQWNPSDRPSFAEIHQAFETMFQESSISDEVEKELGKQGVRGAVSTLLQAPELPTKTRTSRRAAEHRDTTDVPEMPHSKGQGESDPLDHEPAVSPLLPRKERGPPEGGLNEDERLLPKDKKTNLFSALIKKKKKTAPTPPKRSSSFREMDGQPERRGAGEEEGRDISNGALAFTPLDTADPAKSPKPSNGAGVPNGALRESGGSGFRSPHLWKKSSTLTSSRLATGEEEGGGSSSKRFLRSCSASCVPHGAKDTEWRSVTLPRDLQSTGRQFDSSTFGGHKSEKPALPRKRAGENRSDQVTRGTVTPPPRLVKKNEEAADEVFKDIMESSPGSSPPNLTPKPLRRQVTVAPASGLPHKEEAGKGSALGTPAAAEPVTPTSKAGSGAPGGTSKGPAEESRVRRHKHSSESPGRDKGKLSRLKPAPPPPPAASAGKAGGKPSQSPSQEAAGEAVLGAKTKATSLVDAVNSDAAKPSQPGEGLKKPVLPATPKPQSAKPSGTPISPAPVPSTLPSASSALAGDQPSSTAFIPLISTRVSLRKTRQPPERIASGAITKGVVLDSTEALCLAISRNSEQMASHSAVLEAGKNLYTFCVSYVDSIQQMRNKFAFREAINKLENNLRELQICPATAGSGPAATQDFSKLLSSVKEISDIVQR",
|
||||
"modelCreatedDate": "2021-07-01",
|
||||
"latestVersion": 4,
|
||||
"allVersions": [1, 2, 3, 4],
|
||||
"cifUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.cif",
|
||||
"bcifUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.bcif",
|
||||
"pdbUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.pdb",
|
||||
"paeImageUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.png",
|
||||
"paeDocUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.json"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
**Response Fields:**
|
||||
- `entryId`: AlphaFold internal identifier (format: AF-{uniprot}-F{fragment})
|
||||
- `gene`: Gene symbol
|
||||
- `uniprotAccession`: UniProt accession
|
||||
- `uniprotId`: UniProt entry name
|
||||
- `uniprotDescription`: Protein description
|
||||
- `taxId`: NCBI taxonomy identifier
|
||||
- `organismScientificName`: Species scientific name
|
||||
- `uniprotStart/uniprotEnd`: Residue range covered
|
||||
- `uniprotSequence`: Full protein sequence
|
||||
- `modelCreatedDate`: Initial prediction date
|
||||
- `latestVersion`: Current model version number
|
||||
- `allVersions`: List of available versions
|
||||
- `cifUrl/bcifUrl/pdbUrl`: Structure file download URLs
|
||||
- `paeImageUrl`: PAE visualization image URL
|
||||
- `paeDocUrl`: PAE data JSON URL
|
||||
|
||||
### 2. 3D-Beacons Integration
|
||||
|
||||
AlphaFold is integrated into the 3D-Beacons network for federated structure access.
|
||||
|
||||
**Endpoint:** `https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/api/uniprot/summary/{uniprot_id}.json`
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
import requests
|
||||
|
||||
uniprot_id = "P00520"
|
||||
url = f"https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/api/uniprot/summary/{uniprot_id}.json"
|
||||
response = requests.get(url)
|
||||
data = response.json()
|
||||
|
||||
# Filter for AlphaFold structures
|
||||
alphafold_structures = [
|
||||
s for s in data['structures']
|
||||
if s['provider'] == 'AlphaFold DB'
|
||||
]
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## File Access Patterns
|
||||
|
||||
### Direct File Downloads
|
||||
|
||||
All AlphaFold files are accessible via direct URLs without authentication.
|
||||
|
||||
**URL Pattern:**
|
||||
```
|
||||
https://alphafold.ebi.ac.uk/files/{alphafold_id}-{file_type}_{version}.{extension}
|
||||
```
|
||||
|
||||
**Components:**
|
||||
- `{alphafold_id}`: Entry identifier (e.g., "AF-P00520-F1")
|
||||
- `{file_type}`: Type of file (see below)
|
||||
- `{version}`: Database version (e.g., "v4")
|
||||
- `{extension}`: File format extension
|
||||
|
||||
### Available File Types
|
||||
|
||||
#### 1. Model Coordinates
|
||||
|
||||
**mmCIF Format (Recommended):**
|
||||
```
|
||||
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.cif
|
||||
```
|
||||
- Standard crystallographic format
|
||||
- Contains full metadata
|
||||
- Supports large structures
|
||||
- File size: Variable (100KB - 10MB typical)
|
||||
|
||||
**Binary CIF Format:**
|
||||
```
|
||||
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.bcif
|
||||
```
|
||||
- Compressed binary version of mmCIF
|
||||
- Smaller file size (~70% reduction)
|
||||
- Faster parsing
|
||||
- Requires specialized parser
|
||||
|
||||
**PDB Format (Legacy):**
|
||||
```
|
||||
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.pdb
|
||||
```
|
||||
- Traditional PDB text format
|
||||
- Limited to 99,999 atoms
|
||||
- Widely supported by older tools
|
||||
- File size: Similar to mmCIF
|
||||
|
||||
#### 2. Confidence Metrics
|
||||
|
||||
**Per-Residue Confidence (JSON):**
|
||||
```
|
||||
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-confidence_v4.json
|
||||
```
|
||||
|
||||
**Structure:**
|
||||
```json
|
||||
{
|
||||
"confidenceScore": [87.5, 91.2, 93.8, ...],
|
||||
"confidenceCategory": ["high", "very_high", "very_high", ...]
|
||||
}
|
||||
```
|
||||
|
||||
**Fields:**
|
||||
- `confidenceScore`: Array of pLDDT values (0-100) for each residue
|
||||
- `confidenceCategory`: Categorical classification (very_low, low, high, very_high)
|
||||
|
||||
#### 3. Predicted Aligned Error (JSON)
|
||||
|
||||
```
|
||||
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.json
|
||||
```
|
||||
|
||||
**Structure:**
|
||||
```json
|
||||
{
|
||||
"distance": [[0, 2.3, 4.5, ...], [2.3, 0, 3.1, ...], ...],
|
||||
"max_predicted_aligned_error": 31.75
|
||||
}
|
||||
```
|
||||
|
||||
**Fields:**
|
||||
- `distance`: N×N matrix of PAE values in Ångströms
|
||||
- `max_predicted_aligned_error`: Maximum PAE value in the matrix
|
||||
|
||||
#### 4. PAE Visualization (PNG)
|
||||
|
||||
```
|
||||
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.png
|
||||
```
|
||||
- Pre-rendered PAE heatmap
|
||||
- Useful for quick visual assessment
|
||||
- Resolution: Variable based on protein size
|
||||
|
||||
### Batch Download Strategy
|
||||
|
||||
For downloading multiple files efficiently, use concurrent downloads with proper error handling and rate limiting to respect server resources.
|
||||
|
||||
---
|
||||
|
||||
## Data Schemas
|
||||
|
||||
### Coordinate File (mmCIF) Schema
|
||||
|
||||
AlphaFold mmCIF files contain:
|
||||
|
||||
**Key Data Categories:**
|
||||
- `_entry`: Entry-level metadata
|
||||
- `_struct`: Structure title and description
|
||||
- `_entity`: Molecular entity information
|
||||
- `_atom_site`: Atomic coordinates and properties
|
||||
- `_pdbx_struct_assembly`: Biological assembly info
|
||||
|
||||
**Important Fields in `_atom_site`:**
|
||||
- `group_PDB`: "ATOM" for all records
|
||||
- `id`: Atom serial number
|
||||
- `label_atom_id`: Atom name (e.g., "CA", "N", "C")
|
||||
- `label_comp_id`: Residue name (e.g., "ALA", "GLY")
|
||||
- `label_seq_id`: Residue sequence number
|
||||
- `Cartn_x/y/z`: Cartesian coordinates (Ångströms)
|
||||
- `B_iso_or_equiv`: B-factor (contains pLDDT score)
|
||||
|
||||
**pLDDT in B-factor Column:**
|
||||
AlphaFold stores per-residue confidence (pLDDT) in the B-factor field. This allows standard structure viewers to color by confidence automatically.
|
||||
|
||||
### Confidence JSON Schema
|
||||
|
||||
```json
|
||||
{
|
||||
"confidenceScore": [
|
||||
87.5, // Residue 1 pLDDT
|
||||
91.2, // Residue 2 pLDDT
|
||||
93.8 // Residue 3 pLDDT
|
||||
// ... one value per residue
|
||||
],
|
||||
"confidenceCategory": [
|
||||
"high", // Residue 1 category
|
||||
"very_high", // Residue 2 category
|
||||
"very_high" // Residue 3 category
|
||||
// ... one category per residue
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**Confidence Categories:**
|
||||
- `very_high`: pLDDT > 90
|
||||
- `high`: 70 < pLDDT ≤ 90
|
||||
- `low`: 50 < pLDDT ≤ 70
|
||||
- `very_low`: pLDDT ≤ 50
|
||||
|
||||
### PAE JSON Schema
|
||||
|
||||
```json
|
||||
{
|
||||
"distance": [
|
||||
[0.0, 2.3, 4.5, ...], // PAE from residue 1 to all residues
|
||||
[2.3, 0.0, 3.1, ...], // PAE from residue 2 to all residues
|
||||
[4.5, 3.1, 0.0, ...] // PAE from residue 3 to all residues
|
||||
// ... N×N matrix for N residues
|
||||
],
|
||||
"max_predicted_aligned_error": 31.75
|
||||
}
|
||||
```
|
||||
|
||||
**Interpretation:**
|
||||
- `distance[i][j]`: Expected position error (Ångströms) of residue j if the predicted and true structures were aligned on residue i
|
||||
- Lower values indicate more confident relative positioning
|
||||
- Diagonal is always 0 (residue aligned to itself)
|
||||
- Matrix is not symmetric: distance[i][j] ≠ distance[j][i]
|
||||
|
||||
---
|
||||
|
||||
## Google Cloud Access
|
||||
|
||||
AlphaFold DB is hosted on Google Cloud Platform for bulk access.
|
||||
|
||||
### Cloud Storage Bucket
|
||||
|
||||
**Bucket:** `gs://public-datasets-deepmind-alphafold-v4`
|
||||
|
||||
**Directory Structure:**
|
||||
```
|
||||
gs://public-datasets-deepmind-alphafold-v4/
|
||||
├── accession_ids.csv # Index of all entries (13.5 GB)
|
||||
├── sequences.fasta # All protein sequences (16.5 GB)
|
||||
└── proteomes/ # Grouped by species (1M+ archives)
|
||||
```
|
||||
|
||||
### Installing gsutil
|
||||
|
||||
```bash
|
||||
# Using pip
|
||||
pip install gsutil
|
||||
|
||||
# Or install Google Cloud SDK
|
||||
curl https://sdk.cloud.google.com | bash
|
||||
```
|
||||
|
||||
### Downloading Proteomes
|
||||
|
||||
**By Taxonomy ID:**
|
||||
|
||||
```bash
|
||||
# Download all archives for a species
|
||||
TAX_ID=9606 # Human
|
||||
gsutil -m cp gs://public-datasets-deepmind-alphafold-v4/proteomes/proteome-tax_id-${TAX_ID}-*_v4.tar .
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## BigQuery Schema
|
||||
|
||||
AlphaFold metadata is available in BigQuery for SQL-based queries.
|
||||
|
||||
**Dataset:** `bigquery-public-data.deepmind_alphafold`
|
||||
**Table:** `metadata`
|
||||
|
||||
### Key Fields
|
||||
|
||||
| Field | Type | Description |
|
||||
|-------|------|-------------|
|
||||
| `entryId` | STRING | AlphaFold entry ID |
|
||||
| `uniprotAccession` | STRING | UniProt accession |
|
||||
| `gene` | STRING | Gene symbol |
|
||||
| `organismScientificName` | STRING | Species scientific name |
|
||||
| `taxId` | INTEGER | NCBI taxonomy ID |
|
||||
| `globalMetricValue` | FLOAT | Overall quality metric |
|
||||
| `fractionPlddtVeryHigh` | FLOAT | Fraction with pLDDT ≥ 90 |
|
||||
| `isReviewed` | BOOLEAN | Swiss-Prot reviewed status |
|
||||
| `sequenceLength` | INTEGER | Protein sequence length |
|
||||
|
||||
### Example Query
|
||||
|
||||
```sql
|
||||
SELECT
|
||||
entryId,
|
||||
uniprotAccession,
|
||||
gene,
|
||||
fractionPlddtVeryHigh
|
||||
FROM `bigquery-public-data.deepmind_alphafold.metadata`
|
||||
WHERE
|
||||
taxId = 9606 -- Homo sapiens
|
||||
AND fractionPlddtVeryHigh > 0.8
|
||||
AND isReviewed = TRUE
|
||||
ORDER BY fractionPlddtVeryHigh DESC
|
||||
LIMIT 100;
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Best Practices
|
||||
|
||||
### 1. Caching Strategy
|
||||
|
||||
Always cache downloaded files locally to avoid repeated downloads.
|
||||
|
||||
### 2. Error Handling
|
||||
|
||||
Implement robust error handling for API requests with retry logic for transient failures.
|
||||
|
||||
### 3. Bulk Processing
|
||||
|
||||
For processing many proteins, use concurrent downloads with appropriate rate limiting.
|
||||
|
||||
### 4. Version Management
|
||||
|
||||
Always specify and track database versions in your code (current: v4).
|
||||
|
||||
---
|
||||
|
||||
## Error Handling
|
||||
|
||||
### Common HTTP Status Codes
|
||||
|
||||
| Code | Meaning | Action |
|
||||
|------|---------|--------|
|
||||
| 200 | Success | Process response normally |
|
||||
| 404 | Not Found | No AlphaFold prediction for this UniProt ID |
|
||||
| 429 | Too Many Requests | Implement rate limiting and retry with backoff |
|
||||
| 500 | Server Error | Retry with exponential backoff |
|
||||
| 503 | Service Unavailable | Wait and retry later |
|
||||
|
||||
---
|
||||
|
||||
## Rate Limiting
|
||||
|
||||
### Recommendations
|
||||
|
||||
- Limit to **10 concurrent requests** maximum
|
||||
- Add **100-200ms delay** between sequential requests
|
||||
- Use Google Cloud for bulk downloads instead of REST API
|
||||
- Cache all downloaded data locally
|
||||
|
||||
---
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- **AlphaFold GitHub:** https://github.com/google-deepmind/alphafold
|
||||
- **Google Cloud Documentation:** https://cloud.google.com/datasets/alphafold
|
||||
- **3D-Beacons Documentation:** https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/docs
|
||||
- **Biopython Tutorial:** https://biopython.org/wiki/AlphaFold
|
||||
|
||||
## Version History
|
||||
|
||||
- **v1** (2021): Initial release with ~350K structures
|
||||
- **v2** (2022): Expanded to 200M+ structures
|
||||
- **v3** (2023): Updated models and expanded coverage
|
||||
- **v4** (2024): Current version with improved confidence metrics
|
||||
|
||||
## Citation
|
||||
|
||||
When using AlphaFold DB in publications, cite:
|
||||
|
||||
1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
|
||||
2. Varadi, M. et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368–D375 (2024).
|
||||
Reference in New Issue
Block a user