Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,423 @@
# AlphaFold Database API Reference
This document provides comprehensive technical documentation for programmatic access to the AlphaFold Protein Structure Database.
## Table of Contents
1. [REST API Endpoints](#rest-api-endpoints)
2. [File Access Patterns](#file-access-patterns)
3. [Data Schemas](#data-schemas)
4. [Google Cloud Access](#google-cloud-access)
5. [BigQuery Schema](#bigquery-schema)
6. [Best Practices](#best-practices)
7. [Error Handling](#error-handling)
8. [Rate Limiting](#rate-limiting)
---
## REST API Endpoints
### Base URL
```
https://alphafold.ebi.ac.uk/api/
```
### 1. Get Prediction by UniProt Accession
**Endpoint:** `/prediction/{uniprot_id}`
**Method:** GET
**Description:** Retrieve AlphaFold prediction metadata for a given UniProt accession.
**Parameters:**
- `uniprot_id` (required): UniProt accession (e.g., "P00520")
**Example Request:**
```bash
curl https://alphafold.ebi.ac.uk/api/prediction/P00520
```
**Example Response:**
```json
[
{
"entryId": "AF-P00520-F1",
"gene": "ABL1",
"uniprotAccession": "P00520",
"uniprotId": "ABL1_HUMAN",
"uniprotDescription": "Tyrosine-protein kinase ABL1",
"taxId": 9606,
"organismScientificName": "Homo sapiens",
"uniprotStart": 1,
"uniprotEnd": 1130,
"uniprotSequence": "MLEICLKLVGCKSKKGLSSSSSCYLEEALQRPVASDFEPQGLSEAARWNSKENLLAGPSENDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNSLEKHSWYHGPVSRNAAEYLLSSGINGSFLVRESESSPGQRSISLRYEGRVYHYRINTASDGKLYVSSESRFNTLAELVHHHSTVADGLITTLHYPAPKRNKPTVYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAVKTLKEDTMEVEEFLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVNAVVLLYMATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTGDTYTAHAGAKFPIKWTAPESLAYNKFSIKSDVWAFGVLLWEIATYGMSPYPGIDLSQVYELLEKDYRMERPEGCPEKVYELMRACWQWNPSDRPSFAEIHQAFETMFQESSISDEVEKELGKQGVRGAVSTLLQAPELPTKTRTSRRAAEHRDTTDVPEMPHSKGQGESDPLDHEPAVSPLLPRKERGPPEGGLNEDERLLPKDKKTNLFSALIKKKKKTAPTPPKRSSSFREMDGQPERRGAGEEEGRDISNGALAFTPLDTADPAKSPKPSNGAGVPNGALRESGGSGFRSPHLWKKSSTLTSSRLATGEEEGGGSSSKRFLRSCSASCVPHGAKDTEWRSVTLPRDLQSTGRQFDSSTFGGHKSEKPALPRKRAGENRSDQVTRGTVTPPPRLVKKNEEAADEVFKDIMESSPGSSPPNLTPKPLRRQVTVAPASGLPHKEEAGKGSALGTPAAAEPVTPTSKAGSGAPGGTSKGPAEESRVRRHKHSSESPGRDKGKLSRLKPAPPPPPAASAGKAGGKPSQSPSQEAAGEAVLGAKTKATSLVDAVNSDAAKPSQPGEGLKKPVLPATPKPQSAKPSGTPISPAPVPSTLPSASSALAGDQPSSTAFIPLISTRVSLRKTRQPPERIASGAITKGVVLDSTEALCLAISRNSEQMASHSAVLEAGKNLYTFCVSYVDSIQQMRNKFAFREAINKLENNLRELQICPATAGSGPAATQDFSKLLSSVKEISDIVQR",
"modelCreatedDate": "2021-07-01",
"latestVersion": 4,
"allVersions": [1, 2, 3, 4],
"cifUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.cif",
"bcifUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.bcif",
"pdbUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.pdb",
"paeImageUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.png",
"paeDocUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.json"
}
]
```
**Response Fields:**
- `entryId`: AlphaFold internal identifier (format: AF-{uniprot}-F{fragment})
- `gene`: Gene symbol
- `uniprotAccession`: UniProt accession
- `uniprotId`: UniProt entry name
- `uniprotDescription`: Protein description
- `taxId`: NCBI taxonomy identifier
- `organismScientificName`: Species scientific name
- `uniprotStart/uniprotEnd`: Residue range covered
- `uniprotSequence`: Full protein sequence
- `modelCreatedDate`: Initial prediction date
- `latestVersion`: Current model version number
- `allVersions`: List of available versions
- `cifUrl/bcifUrl/pdbUrl`: Structure file download URLs
- `paeImageUrl`: PAE visualization image URL
- `paeDocUrl`: PAE data JSON URL
### 2. 3D-Beacons Integration
AlphaFold is integrated into the 3D-Beacons network for federated structure access.
**Endpoint:** `https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/api/uniprot/summary/{uniprot_id}.json`
**Example:**
```python
import requests
uniprot_id = "P00520"
url = f"https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/api/uniprot/summary/{uniprot_id}.json"
response = requests.get(url)
data = response.json()
# Filter for AlphaFold structures
alphafold_structures = [
s for s in data['structures']
if s['provider'] == 'AlphaFold DB'
]
```
---
## File Access Patterns
### Direct File Downloads
All AlphaFold files are accessible via direct URLs without authentication.
**URL Pattern:**
```
https://alphafold.ebi.ac.uk/files/{alphafold_id}-{file_type}_{version}.{extension}
```
**Components:**
- `{alphafold_id}`: Entry identifier (e.g., "AF-P00520-F1")
- `{file_type}`: Type of file (see below)
- `{version}`: Database version (e.g., "v4")
- `{extension}`: File format extension
### Available File Types
#### 1. Model Coordinates
**mmCIF Format (Recommended):**
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.cif
```
- Standard crystallographic format
- Contains full metadata
- Supports large structures
- File size: Variable (100KB - 10MB typical)
**Binary CIF Format:**
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.bcif
```
- Compressed binary version of mmCIF
- Smaller file size (~70% reduction)
- Faster parsing
- Requires specialized parser
**PDB Format (Legacy):**
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.pdb
```
- Traditional PDB text format
- Limited to 99,999 atoms
- Widely supported by older tools
- File size: Similar to mmCIF
#### 2. Confidence Metrics
**Per-Residue Confidence (JSON):**
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-confidence_v4.json
```
**Structure:**
```json
{
"confidenceScore": [87.5, 91.2, 93.8, ...],
"confidenceCategory": ["high", "very_high", "very_high", ...]
}
```
**Fields:**
- `confidenceScore`: Array of pLDDT values (0-100) for each residue
- `confidenceCategory`: Categorical classification (very_low, low, high, very_high)
#### 3. Predicted Aligned Error (JSON)
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.json
```
**Structure:**
```json
{
"distance": [[0, 2.3, 4.5, ...], [2.3, 0, 3.1, ...], ...],
"max_predicted_aligned_error": 31.75
}
```
**Fields:**
- `distance`: N×N matrix of PAE values in Ångströms
- `max_predicted_aligned_error`: Maximum PAE value in the matrix
#### 4. PAE Visualization (PNG)
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.png
```
- Pre-rendered PAE heatmap
- Useful for quick visual assessment
- Resolution: Variable based on protein size
### Batch Download Strategy
For downloading multiple files efficiently, use concurrent downloads with proper error handling and rate limiting to respect server resources.
---
## Data Schemas
### Coordinate File (mmCIF) Schema
AlphaFold mmCIF files contain:
**Key Data Categories:**
- `_entry`: Entry-level metadata
- `_struct`: Structure title and description
- `_entity`: Molecular entity information
- `_atom_site`: Atomic coordinates and properties
- `_pdbx_struct_assembly`: Biological assembly info
**Important Fields in `_atom_site`:**
- `group_PDB`: "ATOM" for all records
- `id`: Atom serial number
- `label_atom_id`: Atom name (e.g., "CA", "N", "C")
- `label_comp_id`: Residue name (e.g., "ALA", "GLY")
- `label_seq_id`: Residue sequence number
- `Cartn_x/y/z`: Cartesian coordinates (Ångströms)
- `B_iso_or_equiv`: B-factor (contains pLDDT score)
**pLDDT in B-factor Column:**
AlphaFold stores per-residue confidence (pLDDT) in the B-factor field. This allows standard structure viewers to color by confidence automatically.
### Confidence JSON Schema
```json
{
"confidenceScore": [
87.5, // Residue 1 pLDDT
91.2, // Residue 2 pLDDT
93.8 // Residue 3 pLDDT
// ... one value per residue
],
"confidenceCategory": [
"high", // Residue 1 category
"very_high", // Residue 2 category
"very_high" // Residue 3 category
// ... one category per residue
]
}
```
**Confidence Categories:**
- `very_high`: pLDDT > 90
- `high`: 70 < pLDDT ≤ 90
- `low`: 50 < pLDDT ≤ 70
- `very_low`: pLDDT ≤ 50
### PAE JSON Schema
```json
{
"distance": [
[0.0, 2.3, 4.5, ...], // PAE from residue 1 to all residues
[2.3, 0.0, 3.1, ...], // PAE from residue 2 to all residues
[4.5, 3.1, 0.0, ...] // PAE from residue 3 to all residues
// ... N×N matrix for N residues
],
"max_predicted_aligned_error": 31.75
}
```
**Interpretation:**
- `distance[i][j]`: Expected position error (Ångströms) of residue j if the predicted and true structures were aligned on residue i
- Lower values indicate more confident relative positioning
- Diagonal is always 0 (residue aligned to itself)
- Matrix is not symmetric: distance[i][j] ≠ distance[j][i]
---
## Google Cloud Access
AlphaFold DB is hosted on Google Cloud Platform for bulk access.
### Cloud Storage Bucket
**Bucket:** `gs://public-datasets-deepmind-alphafold-v4`
**Directory Structure:**
```
gs://public-datasets-deepmind-alphafold-v4/
├── accession_ids.csv # Index of all entries (13.5 GB)
├── sequences.fasta # All protein sequences (16.5 GB)
└── proteomes/ # Grouped by species (1M+ archives)
```
### Installing gsutil
```bash
# Using pip
pip install gsutil
# Or install Google Cloud SDK
curl https://sdk.cloud.google.com | bash
```
### Downloading Proteomes
**By Taxonomy ID:**
```bash
# Download all archives for a species
TAX_ID=9606 # Human
gsutil -m cp gs://public-datasets-deepmind-alphafold-v4/proteomes/proteome-tax_id-${TAX_ID}-*_v4.tar .
```
---
## BigQuery Schema
AlphaFold metadata is available in BigQuery for SQL-based queries.
**Dataset:** `bigquery-public-data.deepmind_alphafold`
**Table:** `metadata`
### Key Fields
| Field | Type | Description |
|-------|------|-------------|
| `entryId` | STRING | AlphaFold entry ID |
| `uniprotAccession` | STRING | UniProt accession |
| `gene` | STRING | Gene symbol |
| `organismScientificName` | STRING | Species scientific name |
| `taxId` | INTEGER | NCBI taxonomy ID |
| `globalMetricValue` | FLOAT | Overall quality metric |
| `fractionPlddtVeryHigh` | FLOAT | Fraction with pLDDT ≥ 90 |
| `isReviewed` | BOOLEAN | Swiss-Prot reviewed status |
| `sequenceLength` | INTEGER | Protein sequence length |
### Example Query
```sql
SELECT
entryId,
uniprotAccession,
gene,
fractionPlddtVeryHigh
FROM `bigquery-public-data.deepmind_alphafold.metadata`
WHERE
taxId = 9606 -- Homo sapiens
AND fractionPlddtVeryHigh > 0.8
AND isReviewed = TRUE
ORDER BY fractionPlddtVeryHigh DESC
LIMIT 100;
```
---
## Best Practices
### 1. Caching Strategy
Always cache downloaded files locally to avoid repeated downloads.
### 2. Error Handling
Implement robust error handling for API requests with retry logic for transient failures.
### 3. Bulk Processing
For processing many proteins, use concurrent downloads with appropriate rate limiting.
### 4. Version Management
Always specify and track database versions in your code (current: v4).
---
## Error Handling
### Common HTTP Status Codes
| Code | Meaning | Action |
|------|---------|--------|
| 200 | Success | Process response normally |
| 404 | Not Found | No AlphaFold prediction for this UniProt ID |
| 429 | Too Many Requests | Implement rate limiting and retry with backoff |
| 500 | Server Error | Retry with exponential backoff |
| 503 | Service Unavailable | Wait and retry later |
---
## Rate Limiting
### Recommendations
- Limit to **10 concurrent requests** maximum
- Add **100-200ms delay** between sequential requests
- Use Google Cloud for bulk downloads instead of REST API
- Cache all downloaded data locally
---
## Additional Resources
- **AlphaFold GitHub:** https://github.com/google-deepmind/alphafold
- **Google Cloud Documentation:** https://cloud.google.com/datasets/alphafold
- **3D-Beacons Documentation:** https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/docs
- **Biopython Tutorial:** https://biopython.org/wiki/AlphaFold
## Version History
- **v1** (2021): Initial release with ~350K structures
- **v2** (2022): Expanded to 200M+ structures
- **v3** (2023): Updated models and expanded coverage
- **v4** (2024): Current version with improved confidence metrics
## Citation
When using AlphaFold DB in publications, cite:
1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583589 (2021).
2. Varadi, M. et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368D375 (2024).