Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,500 @@
---
name: alphafold-database
description: "Access AlphaFold's 200M+ AI-predicted protein structures. Retrieve structures by UniProt ID, download PDB/mmCIF files, analyze confidence metrics (pLDDT, PAE), for drug discovery and structural biology."
---
# AlphaFold Database
## Overview
AlphaFold DB is a public repository of AI-predicted 3D protein structures for over 200 million proteins, maintained by DeepMind and EMBL-EBI. Access structure predictions with confidence metrics, download coordinate files, retrieve bulk datasets, and integrate predictions into computational workflows.
## When to Use This Skill
This skill should be used when working with AI-predicted protein structures in scenarios such as:
- Retrieving protein structure predictions by UniProt ID or protein name
- Downloading PDB/mmCIF coordinate files for structural analysis
- Analyzing prediction confidence metrics (pLDDT, PAE) to assess reliability
- Accessing bulk proteome datasets via Google Cloud Platform
- Comparing predicted structures with experimental data
- Performing structure-based drug discovery or protein engineering
- Building structural models for proteins lacking experimental structures
- Integrating AlphaFold predictions into computational pipelines
## Core Capabilities
### 1. Searching and Retrieving Predictions
**Using Biopython (Recommended):**
The Biopython library provides the simplest interface for retrieving AlphaFold structures:
```python
from Bio.PDB import alphafold_db
# Get all predictions for a UniProt accession
predictions = list(alphafold_db.get_predictions("P00520"))
# Download structure file (mmCIF format)
for prediction in predictions:
cif_file = alphafold_db.download_cif_for(prediction, directory="./structures")
print(f"Downloaded: {cif_file}")
# Get Structure objects directly
from Bio.PDB import MMCIFParser
structures = list(alphafold_db.get_structural_models_for("P00520"))
```
**Direct API Access:**
Query predictions using REST endpoints:
```python
import requests
# Get prediction metadata for a UniProt accession
uniprot_id = "P00520"
api_url = f"https://alphafold.ebi.ac.uk/api/prediction/{uniprot_id}"
response = requests.get(api_url)
prediction_data = response.json()
# Extract AlphaFold ID
alphafold_id = prediction_data[0]['entryId']
print(f"AlphaFold ID: {alphafold_id}")
```
**Using UniProt to Find Accessions:**
Search UniProt to find protein accessions first:
```python
import urllib.parse, urllib.request
def get_uniprot_ids(query, query_type='PDB_ID'):
"""Query UniProt to get accession IDs"""
url = 'https://www.uniprot.org/uploadlists/'
params = {
'from': query_type,
'to': 'ACC',
'format': 'txt',
'query': query
}
data = urllib.parse.urlencode(params).encode('ascii')
with urllib.request.urlopen(urllib.request.Request(url, data)) as response:
return response.read().decode('utf-8').splitlines()
# Example: Find UniProt IDs for a protein name
protein_ids = get_uniprot_ids("hemoglobin", query_type="GENE_NAME")
```
### 2. Downloading Structure Files
AlphaFold provides multiple file formats for each prediction:
**File Types Available:**
- **Model coordinates** (`model_v4.cif`): Atomic coordinates in mmCIF/PDBx format
- **Confidence scores** (`confidence_v4.json`): Per-residue pLDDT scores (0-100)
- **Predicted Aligned Error** (`predicted_aligned_error_v4.json`): PAE matrix for residue pair confidence
**Download URLs:**
```python
import requests
alphafold_id = "AF-P00520-F1"
version = "v4"
# Model coordinates (mmCIF)
model_url = f"https://alphafold.ebi.ac.uk/files/{alphafold_id}-model_{version}.cif"
response = requests.get(model_url)
with open(f"{alphafold_id}.cif", "w") as f:
f.write(response.text)
# Confidence scores (JSON)
confidence_url = f"https://alphafold.ebi.ac.uk/files/{alphafold_id}-confidence_{version}.json"
response = requests.get(confidence_url)
confidence_data = response.json()
# Predicted Aligned Error (JSON)
pae_url = f"https://alphafold.ebi.ac.uk/files/{alphafold_id}-predicted_aligned_error_{version}.json"
response = requests.get(pae_url)
pae_data = response.json()
```
**PDB Format (Alternative):**
```python
# Download as PDB format instead of mmCIF
pdb_url = f"https://alphafold.ebi.ac.uk/files/{alphafold_id}-model_{version}.pdb"
response = requests.get(pdb_url)
with open(f"{alphafold_id}.pdb", "wb") as f:
f.write(response.content)
```
### 3. Working with Confidence Metrics
AlphaFold predictions include confidence estimates critical for interpretation:
**pLDDT (per-residue confidence):**
```python
import json
import requests
# Load confidence scores
alphafold_id = "AF-P00520-F1"
confidence_url = f"https://alphafold.ebi.ac.uk/files/{alphafold_id}-confidence_v4.json"
confidence = requests.get(confidence_url).json()
# Extract pLDDT scores
plddt_scores = confidence['confidenceScore']
# Interpret confidence levels
# pLDDT > 90: Very high confidence
# pLDDT 70-90: High confidence
# pLDDT 50-70: Low confidence
# pLDDT < 50: Very low confidence
high_confidence_residues = [i for i, score in enumerate(plddt_scores) if score > 90]
print(f"High confidence residues: {len(high_confidence_residues)}/{len(plddt_scores)}")
```
**PAE (Predicted Aligned Error):**
PAE indicates confidence in relative domain positions:
```python
import numpy as np
import matplotlib.pyplot as plt
# Load PAE matrix
pae_url = f"https://alphafold.ebi.ac.uk/files/{alphafold_id}-predicted_aligned_error_v4.json"
pae = requests.get(pae_url).json()
# Visualize PAE matrix
pae_matrix = np.array(pae['distance'])
plt.figure(figsize=(10, 8))
plt.imshow(pae_matrix, cmap='viridis_r', vmin=0, vmax=30)
plt.colorbar(label='PAE (Å)')
plt.title(f'Predicted Aligned Error: {alphafold_id}')
plt.xlabel('Residue')
plt.ylabel('Residue')
plt.savefig(f'{alphafold_id}_pae.png', dpi=300, bbox_inches='tight')
# Low PAE values (<5 Å) indicate confident relative positioning
# High PAE values (>15 Å) suggest uncertain domain arrangements
```
### 4. Bulk Data Access via Google Cloud
For large-scale analyses, use Google Cloud datasets:
**Google Cloud Storage:**
```bash
# Install gsutil
uv pip install gsutil
# List available data
gsutil ls gs://public-datasets-deepmind-alphafold-v4/
# Download entire proteomes (by taxonomy ID)
gsutil -m cp gs://public-datasets-deepmind-alphafold-v4/proteomes/proteome-tax_id-9606-*.tar .
# Download specific files
gsutil cp gs://public-datasets-deepmind-alphafold-v4/accession_ids.csv .
```
**BigQuery Metadata Access:**
```python
from google.cloud import bigquery
# Initialize client
client = bigquery.Client()
# Query metadata
query = """
SELECT
entryId,
uniprotAccession,
organismScientificName,
globalMetricValue,
fractionPlddtVeryHigh
FROM `bigquery-public-data.deepmind_alphafold.metadata`
WHERE organismScientificName = 'Homo sapiens'
AND fractionPlddtVeryHigh > 0.8
LIMIT 100
"""
results = client.query(query).to_dataframe()
print(f"Found {len(results)} high-confidence human proteins")
```
**Download by Species:**
```python
import subprocess
def download_proteome(taxonomy_id, output_dir="./proteomes"):
"""Download all AlphaFold predictions for a species"""
pattern = f"gs://public-datasets-deepmind-alphafold-v4/proteomes/proteome-tax_id-{taxonomy_id}-*_v4.tar"
cmd = f"gsutil -m cp {pattern} {output_dir}/"
subprocess.run(cmd, shell=True, check=True)
# Download E. coli proteome (tax ID: 83333)
download_proteome(83333)
# Download human proteome (tax ID: 9606)
download_proteome(9606)
```
### 5. Parsing and Analyzing Structures
Work with downloaded AlphaFold structures using BioPython:
```python
from Bio.PDB import MMCIFParser, PDBIO
import numpy as np
# Parse mmCIF file
parser = MMCIFParser(QUIET=True)
structure = parser.get_structure("protein", "AF-P00520-F1-model_v4.cif")
# Extract coordinates
coords = []
for model in structure:
for chain in model:
for residue in chain:
if 'CA' in residue: # Alpha carbons only
coords.append(residue['CA'].get_coord())
coords = np.array(coords)
print(f"Structure has {len(coords)} residues")
# Calculate distances
from scipy.spatial.distance import pdist, squareform
distance_matrix = squareform(pdist(coords))
# Identify contacts (< 8 Å)
contacts = np.where((distance_matrix > 0) & (distance_matrix < 8))
print(f"Number of contacts: {len(contacts[0]) // 2}")
```
**Extract B-factors (pLDDT values):**
AlphaFold stores pLDDT scores in the B-factor column:
```python
from Bio.PDB import MMCIFParser
parser = MMCIFParser(QUIET=True)
structure = parser.get_structure("protein", "AF-P00520-F1-model_v4.cif")
# Extract pLDDT from B-factors
plddt_scores = []
for model in structure:
for chain in model:
for residue in chain:
if 'CA' in residue:
plddt_scores.append(residue['CA'].get_bfactor())
# Identify high-confidence regions
high_conf_regions = [(i, score) for i, score in enumerate(plddt_scores, 1) if score > 90]
print(f"High confidence residues: {len(high_conf_regions)}")
```
### 6. Batch Processing Multiple Proteins
Process multiple predictions efficiently:
```python
from Bio.PDB import alphafold_db
import pandas as pd
uniprot_ids = ["P00520", "P12931", "P04637"] # Multiple proteins
results = []
for uniprot_id in uniprot_ids:
try:
# Get prediction
predictions = list(alphafold_db.get_predictions(uniprot_id))
if predictions:
pred = predictions[0]
# Download structure
cif_file = alphafold_db.download_cif_for(pred, directory="./batch_structures")
# Get confidence data
alphafold_id = pred['entryId']
conf_url = f"https://alphafold.ebi.ac.uk/files/{alphafold_id}-confidence_v4.json"
conf_data = requests.get(conf_url).json()
# Calculate statistics
plddt_scores = conf_data['confidenceScore']
avg_plddt = np.mean(plddt_scores)
high_conf_fraction = sum(1 for s in plddt_scores if s > 90) / len(plddt_scores)
results.append({
'uniprot_id': uniprot_id,
'alphafold_id': alphafold_id,
'avg_plddt': avg_plddt,
'high_conf_fraction': high_conf_fraction,
'length': len(plddt_scores)
})
except Exception as e:
print(f"Error processing {uniprot_id}: {e}")
# Create summary DataFrame
df = pd.DataFrame(results)
print(df)
```
## Installation and Setup
### Python Libraries
```bash
# Install Biopython for structure access
uv pip install biopython
# Install requests for API access
uv pip install requests
# For visualization and analysis
uv pip install numpy matplotlib pandas scipy
# For Google Cloud access (optional)
uv pip install google-cloud-bigquery gsutil
```
### 3D-Beacons API Alternative
AlphaFold can also be accessed via the 3D-Beacons federated API:
```python
import requests
# Query via 3D-Beacons
uniprot_id = "P00520"
url = f"https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/api/uniprot/summary/{uniprot_id}.json"
response = requests.get(url)
data = response.json()
# Filter for AlphaFold structures
af_structures = [s for s in data['structures'] if s['provider'] == 'AlphaFold DB']
```
## Common Use Cases
### Structural Proteomics
- Download complete proteome predictions for analysis
- Identify high-confidence structural regions across proteins
- Compare predicted structures with experimental data
- Build structural models for protein families
### Drug Discovery
- Retrieve target protein structures for docking studies
- Analyze binding site conformations
- Identify druggable pockets in predicted structures
- Compare structures across homologs
### Protein Engineering
- Identify stable/unstable regions using pLDDT
- Design mutations in high-confidence regions
- Analyze domain architectures using PAE
- Model protein variants and mutations
### Evolutionary Studies
- Compare ortholog structures across species
- Analyze conservation of structural features
- Study domain evolution patterns
- Identify functionally important regions
## Key Concepts
**UniProt Accession:** Primary identifier for proteins (e.g., "P00520"). Required for querying AlphaFold DB.
**AlphaFold ID:** Internal identifier format: `AF-[UniProt accession]-F[fragment number]` (e.g., "AF-P00520-F1").
**pLDDT (predicted Local Distance Difference Test):** Per-residue confidence metric (0-100). Higher values indicate more confident predictions.
**PAE (Predicted Aligned Error):** Matrix indicating confidence in relative positions between residue pairs. Low values (<5 Å) suggest confident relative positioning.
**Database Version:** Current version is v4. File URLs include version suffix (e.g., `model_v4.cif`).
**Fragment Number:** Large proteins may be split into fragments. Fragment number appears in AlphaFold ID (e.g., F1, F2).
## Confidence Interpretation Guidelines
**pLDDT Thresholds:**
- **>90**: Very high confidence - suitable for detailed analysis
- **70-90**: High confidence - generally reliable backbone structure
- **50-70**: Low confidence - use with caution, flexible regions
- **<50**: Very low confidence - likely disordered or unreliable
**PAE Guidelines:**
- **<5 Å**: Confident relative positioning of domains
- **5-10 Å**: Moderate confidence in arrangement
- **>15 Å**: Uncertain relative positions, domains may be mobile
## Resources
### references/api_reference.md
Comprehensive API documentation covering:
- Complete REST API endpoint specifications
- File format details and data schemas
- Google Cloud dataset structure and access patterns
- Advanced query examples and batch processing strategies
- Rate limiting, caching, and best practices
- Troubleshooting common issues
Consult this reference for detailed API information, bulk download strategies, or when working with large-scale datasets.
## Important Notes
### Data Usage and Attribution
- AlphaFold DB is freely available under CC-BY-4.0 license
- Cite: Jumper et al. (2021) Nature and Varadi et al. (2022) Nucleic Acids Research
- Predictions are computational models, not experimental structures
- Always assess confidence metrics before downstream analysis
### Version Management
- Current database version: v4 (as of 2024-2025)
- File URLs include version suffix (e.g., `_v4.cif`)
- Check for database updates regularly
- Older versions may be deprecated over time
### Data Quality Considerations
- High pLDDT doesn't guarantee functional accuracy
- Low confidence regions may be disordered in vivo
- PAE indicates relative domain confidence, not absolute positioning
- Predictions lack ligands, post-translational modifications, and cofactors
- Multi-chain complexes are not predicted (single chains only)
### Performance Tips
- Use Biopython for simple single-protein access
- Use Google Cloud for bulk downloads (much faster than individual files)
- Cache downloaded files locally to avoid repeated downloads
- BigQuery free tier: 1 TB processed data per month
- Consider network bandwidth for large-scale downloads
## Additional Resources
- **AlphaFold DB Website:** https://alphafold.ebi.ac.uk/
- **API Documentation:** https://alphafold.ebi.ac.uk/api-docs
- **Google Cloud Dataset:** https://cloud.google.com/blog/products/ai-machine-learning/alphafold-protein-structure-database
- **3D-Beacons API:** https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/
- **AlphaFold Papers:**
- Nature (2021): https://doi.org/10.1038/s41586-021-03819-2
- Nucleic Acids Research (2024): https://doi.org/10.1093/nar/gkad1011
- **Biopython Documentation:** https://biopython.org/docs/dev/api/Bio.PDB.alphafold_db.html
- **GitHub Repository:** https://github.com/google-deepmind/alphafold