18 KiB
🚨 CRITICAL GUIDELINES
Windows File Path Requirements
MANDATORY: Always Use Backslashes on Windows for File Paths
When using Edit or Write tools on Windows, you MUST use backslashes (\) in file paths, NOT forward slashes (/).
Examples:
- ❌ WRONG:
D:/repos/project/file.tsx - ✅ CORRECT:
D:\repos\project\file.tsx
This applies to:
- Edit tool file_path parameter
- Write tool file_path parameter
- All file operations on Windows systems
Documentation Guidelines
NEVER create new documentation files unless explicitly requested by the user.
- Priority: Update existing README.md files rather than creating new documentation
- Repository cleanliness: Keep repository root clean - only README.md unless user requests otherwise
- Style: Documentation should be concise, direct, and professional - avoid AI-generated tone
- User preference: Only create additional .md files when user specifically asks for documentation
Azure OpenAI Service - 2025 Models and Features
Complete knowledge base for Azure OpenAI Service with latest 2025 models including GPT-5, GPT-4.1, reasoning models, and Azure AI Foundry integration.
Overview
Azure OpenAI Service provides REST API access to OpenAI's most powerful models with enterprise-grade security, compliance, and regional availability.
Latest Models (2025)
GPT-5 Series (GA August 2025)
Registration Required Models:
gpt-5-pro: Highest capability, complex reasoninggpt-5: Balanced performance and costgpt-5-codex: Optimized for code generation
No Registration Required:
gpt-5-mini: Faster, more affordablegpt-5-nano: Ultra-fast for simple tasksgpt-5-chat: Optimized for conversational use
GPT-4.1 Series
gpt-4.1: 1 million token context windowgpt-4.1-mini: Efficient version with 1M contextgpt-4.1-nano: Fastest variant
Key Improvements:
- 1,000,000 token context (vs 128K in GPT-4 Turbo)
- Better instruction following
- Reduced hallucinations
- Improved multilingual support
Reasoning Models
o4-mini: Lightweight reasoning model
- Faster inference
- Lower cost
- Suitable for structured reasoning tasks
o3: Advanced reasoning model
- Complex problem solving
- Mathematical reasoning
- Scientific analysis
o1: Original reasoning model
- General-purpose reasoning
- Step-by-step explanations
o1-mini: Efficient reasoning
- Balanced cost and performance
Image Generation
GPT-image-1 (2025-04-15)
- DALL-E 3 successor
- Higher quality images
- Better prompt understanding
- Improved safety filters
Video Generation
Sora (2025-05-02)
- Text-to-video generation
- Realistic and imaginative scenes
- Up to 60 seconds of video
- Multiple camera angles and styles
Audio Models
gpt-4o-transcribe: Speech-to-text powered by GPT-4o
- High accuracy transcription
- Multiple languages
- Speaker diarization
gpt-4o-mini-transcribe: Faster, more affordable transcription
- Good accuracy
- Lower latency
- Cost-effective
Deploying Azure OpenAI
Create Azure OpenAI Resource
# Create OpenAI account
az cognitiveservices account create \
--name myopenai \
--resource-group MyRG \
--kind OpenAI \
--sku S0 \
--location eastus \
--custom-domain myopenai \
--public-network-access Disabled \
--identity-type SystemAssigned
# Get endpoint and key
az cognitiveservices account show \
--name myopenai \
--resource-group MyRG \
--query "properties.endpoint" \
--output tsv
az cognitiveservices account keys list \
--name myopenai \
--resource-group MyRG \
--query "key1" \
--output tsv
Deploy GPT-5 Model
# Deploy gpt-5
az cognitiveservices account deployment create \
--resource-group MyRG \
--name myopenai \
--deployment-name gpt-5 \
--model-name gpt-5 \
--model-version latest \
--model-format OpenAI \
--sku-name Standard \
--sku-capacity 100 \
--scale-type Standard
# Deploy gpt-5-pro (requires registration)
az cognitiveservices account deployment create \
--resource-group MyRG \
--name myopenai \
--deployment-name gpt-5-pro \
--model-name gpt-5-pro \
--model-version latest \
--model-format OpenAI \
--sku-name Standard \
--sku-capacity 50
Deploy Reasoning Models
# Deploy o3 reasoning model
az cognitiveservices account deployment create \
--resource-group MyRG \
--name myopenai \
--deployment-name o3-reasoning \
--model-name o3 \
--model-version latest \
--model-format OpenAI \
--sku-name Standard \
--sku-capacity 50
# Deploy o4-mini
az cognitiveservices account deployment create \
--resource-group MyRG \
--name myopenai \
--deployment-name o4-mini \
--model-name o4-mini \
--model-version latest \
--model-format OpenAI \
--sku-name Standard \
--sku-capacity 100
Deploy GPT-4.1 with 1M Context
az cognitiveservices account deployment create \
--resource-group MyRG \
--name myopenai \
--deployment-name gpt-4-1 \
--model-name gpt-4.1 \
--model-version latest \
--model-format OpenAI \
--sku-name Standard \
--sku-capacity 100
Deploy Image Generation Model
az cognitiveservices account deployment create \
--resource-group MyRG \
--name myopenai \
--deployment-name image-gen \
--model-name gpt-image-1 \
--model-version 2025-04-15 \
--model-format OpenAI \
--sku-name Standard \
--sku-capacity 10
Deploy Sora Video Generation
az cognitiveservices account deployment create \
--resource-group MyRG \
--name myopenai \
--deployment-name sora \
--model-name sora \
--model-version 2025-05-02 \
--model-format OpenAI \
--sku-name Standard \
--sku-capacity 5
Using Azure OpenAI Models
Python SDK (GPT-5)
from openai import AzureOpenAI
import os
# Initialize client
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2025-02-01-preview",
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")
)
# GPT-5 completion
response = client.chat.completions.create(
model="gpt-5", # deployment name
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Explain quantum computing in simple terms."}
],
max_tokens=1000,
temperature=0.7,
top_p=0.95
)
print(response.choices[0].message.content)
Python SDK (o3 Reasoning Model)
# o3 reasoning with chain-of-thought
response = client.chat.completions.create(
model="o3-reasoning",
messages=[
{"role": "system", "content": "You are an expert problem solver. Show your reasoning step-by-step."},
{"role": "user", "content": "If a train travels 120 km in 2 hours, then speeds up to travel 180 km in the next 2 hours, what is the average speed for the entire journey?"}
],
max_tokens=2000,
temperature=0.2 # Lower temperature for reasoning tasks
)
print(response.choices[0].message.content)
Python SDK (GPT-4.1 with 1M Context)
# Read a large document
with open('large_document.txt', 'r') as f:
document = f.read()
# GPT-4.1 can handle up to 1M tokens
response = client.chat.completions.create(
model="gpt-4-1",
messages=[
{"role": "system", "content": "You are a document analysis expert."},
{"role": "user", "content": f"Analyze this document and provide key insights:\n\n{document}"}
],
max_tokens=4000
)
print(response.choices[0].message.content)
Image Generation (GPT-image-1)
# Generate image with DALL-E 3 successor
response = client.images.generate(
model="image-gen",
prompt="A futuristic city with flying cars and vertical gardens, cyberpunk style, highly detailed, 4K",
size="1024x1024",
quality="hd",
n=1
)
image_url = response.data[0].url
print(f"Generated image: {image_url}")
Video Generation (Sora)
# Generate video with Sora
response = client.videos.generate(
model="sora",
prompt="A serene lakeside at sunset with birds flying overhead and gentle waves on the shore",
duration=10, # seconds
resolution="1080p",
fps=30
)
video_url = response.data[0].url
print(f"Generated video: {video_url}")
Audio Transcription
# Transcribe audio file
audio_file = open("meeting_recording.mp3", "rb")
response = client.audio.transcriptions.create(
model="gpt-4o-transcribe",
file=audio_file,
language="en",
response_format="verbose_json"
)
print(f"Transcription: {response.text}")
print(f"Duration: {response.duration}s")
# Speaker diarization
for segment in response.segments:
print(f"[{segment.start}s - {segment.end}s] {segment.text}")
Azure AI Foundry Integration
Model Router (Automatic Model Selection)
from azure.ai.foundry import ModelRouter
# Initialize model router
router = ModelRouter(
endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
credential=os.getenv("AZURE_OPENAI_API_KEY")
)
# Automatically select optimal model
response = router.complete(
prompt="Analyze this complex scientific paper...",
optimization_goals=["quality", "cost"],
available_models=["gpt-5", "gpt-5-mini", "gpt-4-1"]
)
print(f"Selected model: {response.model_used}")
print(f"Response: {response.content}")
print(f"Cost: ${response.cost}")
Benefits:
- Automatic model selection based on prompt complexity
- Balance quality vs cost
- Reduce costs by up to 40% while maintaining quality
Agentic Retrieval (Azure AI Search Integration)
from azure.search.documents import SearchClient
from azure.core.credentials import AzureKeyCredential
# Initialize search client
search_client = SearchClient(
endpoint=os.getenv("SEARCH_ENDPOINT"),
index_name="documents",
credential=AzureKeyCredential(os.getenv("SEARCH_KEY"))
)
# Agentic retrieval with Azure OpenAI
response = client.chat.completions.create(
model="gpt-5",
messages=[
{"role": "system", "content": "You have access to a document search system."},
{"role": "user", "content": "What are the company's revenue projections for Q3?"}
],
tools=[{
"type": "function",
"function": {
"name": "search_documents",
"description": "Search company documents",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"}
},
"required": ["query"]
}
}
}],
tool_choice="auto"
)
# Process tool calls
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
if tool_call.function.name == "search_documents":
query = json.loads(tool_call.function.arguments)["query"]
results = search_client.search(query)
# Feed results back to model for final answer
Improvements:
- 40% better on complex, multi-part questions
- Automatic query decomposition
- Relevance ranking
- Citation generation
Foundry Observability (Preview)
from azure.ai.foundry import FoundryObservability
# Enable observability
observability = FoundryObservability(
workspace_id=os.getenv("AI_FOUNDRY_WORKSPACE_ID"),
enable_tracing=True,
enable_metrics=True
)
# Monitor agent execution
with observability.trace_agent("customer_support_agent") as trace:
response = client.chat.completions.create(
model="gpt-5",
messages=messages
)
trace.log_tool_call("search_kb", {"query": "refund policy"})
trace.log_reasoning_step("Retrieved refund policy document")
trace.log_token_usage(response.usage.total_tokens)
# View in Azure AI Foundry portal:
# - End-to-end trace logs
# - Reasoning steps and tool calls
# - Performance metrics
# - Cost analysis
Capacity and Quota Management
Check Quota
# List deployments with usage
az cognitiveservices account deployment list \
--resource-group MyRG \
--name myopenai \
--output table
# Check usage metrics
az monitor metrics list \
--resource $(az cognitiveservices account show -g MyRG -n myopenai --query id -o tsv) \
--metric "TokenTransaction" \
--start-time 2025-01-01T00:00:00Z \
--end-time 2025-01-31T23:59:59Z \
--interval PT1H \
--aggregation Total
Update Capacity
# Scale up deployment capacity
az cognitiveservices account deployment update \
--resource-group MyRG \
--name myopenai \
--deployment-name gpt-5 \
--sku-capacity 200
# Scale down during off-peak
az cognitiveservices account deployment update \
--resource-group MyRG \
--name myopenai \
--deployment-name gpt-5 \
--sku-capacity 50
Request Quota Increase
- Navigate to Azure Portal → Azure OpenAI resource
- Go to "Quotas" blade
- Select model and region
- Click "Request quota increase"
- Provide justification and target capacity
Security and Networking
Private Endpoint
# Create private endpoint
az network private-endpoint create \
--name openai-private-endpoint \
--resource-group MyRG \
--vnet-name MyVNet \
--subnet PrivateEndpointSubnet \
--private-connection-resource-id $(az cognitiveservices account show -g MyRG -n myopenai --query id -o tsv) \
--group-id account \
--connection-name openai-connection
# Create private DNS zone
az network private-dns zone create \
--resource-group MyRG \
--name privatelink.openai.azure.com
# Link to VNet
az network private-dns link vnet create \
--resource-group MyRG \
--zone-name privatelink.openai.azure.com \
--name openai-dns-link \
--virtual-network MyVNet \
--registration-enabled false
# Create DNS zone group
az network private-endpoint dns-zone-group create \
--resource-group MyRG \
--endpoint-name openai-private-endpoint \
--name default \
--private-dns-zone privatelink.openai.azure.com \
--zone-name privatelink.openai.azure.com
Managed Identity Access
# Enable system-assigned identity
az cognitiveservices account identity assign \
--name myopenai \
--resource-group MyRG
# Grant role to managed identity
PRINCIPAL_ID=$(az cognitiveservices account show -g MyRG -n myopenai --query identity.principalId -o tsv)
az role assignment create \
--assignee $PRINCIPAL_ID \
--role "Cognitive Services OpenAI User" \
--scope /subscriptions/<sub-id>/resourceGroups/MyRG
Content Filtering
# Configure content filtering
az cognitiveservices account update \
--name myopenai \
--resource-group MyRG \
--set properties.customContentFilter='{
"hate": {"severity": "medium", "enabled": true},
"violence": {"severity": "medium", "enabled": true},
"sexual": {"severity": "medium", "enabled": true},
"selfHarm": {"severity": "high", "enabled": true}
}'
Cost Optimization
Model Selection Strategy
Use GPT-5-mini or GPT-5-nano for:
- Simple questions
- Classification tasks
- Content moderation
- Summarization
Use GPT-5 or GPT-4.1 for:
- Complex reasoning
- Long-form content generation
- Document analysis
- Code generation
Use Reasoning Models (o3, o4-mini) for:
- Mathematical problems
- Scientific analysis
- Step-by-step reasoning
- Logic puzzles
Implement Caching
# Use semantic cache to reduce duplicate requests
from azure.ai.cache import SemanticCache
cache = SemanticCache(
similarity_threshold=0.95,
ttl_seconds=3600
)
# Check cache before API call
cached_response = cache.get(user_query)
if cached_response:
return cached_response
response = client.chat.completions.create(
model="gpt-5",
messages=messages
)
cache.set(user_query, response)
Token Management
import tiktoken
# Count tokens before API call
encoding = tiktoken.get_encoding("cl100k_base")
tokens = len(encoding.encode(prompt))
if tokens > 100000:
print(f"Warning: Prompt has {tokens} tokens, this will be expensive!")
# Use shorter max_tokens when appropriate
response = client.chat.completions.create(
model="gpt-5",
messages=messages,
max_tokens=500 # Limit output tokens
)
Monitoring and Alerts
Set Up Cost Alerts
# Create budget alert
az consumption budget create \
--budget-name openai-monthly-budget \
--resource-group MyRG \
--amount 1000 \
--category Cost \
--time-grain Monthly \
--start-date 2025-01-01 \
--end-date 2025-12-31 \
--notifications '{
"actual_GreaterThan_80_Percent": {
"enabled": true,
"operator": "GreaterThan",
"threshold": 80,
"contactEmails": ["billing@example.com"]
}
}'
Application Insights Integration
from opencensus.ext.azure.log_exporter import AzureLogHandler
import logging
# Configure logging
logger = logging.getLogger(__name__)
logger.addHandler(AzureLogHandler(
connection_string=os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING")
))
# Log API calls
logger.info("OpenAI API call", extra={
"custom_dimensions": {
"model": "gpt-5",
"tokens": response.usage.total_tokens,
"cost": calculate_cost(response.usage.total_tokens),
"latency_ms": response.response_ms
}
})
Best Practices
✓ Use Model Router for automatic cost optimization ✓ Implement caching to reduce duplicate requests ✓ Monitor token usage and set budgets ✓ Use private endpoints for production workloads ✓ Enable managed identity instead of API keys ✓ Configure content filtering for safety ✓ Right-size capacity based on actual demand ✓ Use Foundry Observability for monitoring ✓ Implement retry logic with exponential backoff ✓ Choose appropriate models for task complexity
References
- Azure OpenAI Documentation
- What's New in Azure OpenAI
- GPT-5 Announcement
- Azure AI Foundry
- Model Pricing
Azure OpenAI Service with GPT-5 and reasoning models brings enterprise-grade AI to your applications!