Files
gh-jezweb-claude-skills-ski…/templates/vite-react/tool-calling.tsx
2025-11-30 08:25:37 +08:00

277 lines
7.3 KiB
TypeScript

/**
* Tool Calling Integration Example
*
* Demonstrates how to integrate tool calling (function calling) with TheSys C1.
* Shows:
* - Web search tool with Tavily API
* - Product inventory lookup
* - Order creation with Zod validation
* - Interactive UI for tool results
*
* Backend Requirements:
* - OpenAI SDK with runTools support
* - Zod for schema validation
* - Tool execution handlers
*/
import "@crayonai/react-ui/styles/index.css";
import { ThemeProvider, C1Component } from "@thesysai/genui-sdk";
import { useState } from "react";
import "./App.css";
// Example tool schemas (these match backend Zod schemas)
interface WebSearchTool {
name: "web_search";
args: {
query: string;
max_results: number;
};
}
interface ProductLookupTool {
name: "lookup_product";
args: {
product_type?: "gloves" | "hat" | "scarf";
};
}
interface CreateOrderTool {
name: "create_order";
args: {
customer_email: string;
items: Array<{
type: "gloves" | "hat" | "scarf";
quantity: number;
[key: string]: any;
}>;
};
}
type ToolCall = WebSearchTool | ProductLookupTool | CreateOrderTool;
export default function ToolCallingExample() {
const [isLoading, setIsLoading] = useState(false);
const [c1Response, setC1Response] = useState("");
const [question, setQuestion] = useState("");
const [activeTools, setActiveTools] = useState<string[]>([]);
const makeApiCall = async (query: string, previousResponse?: string) => {
if (!query.trim()) return;
setIsLoading(true);
setActiveTools([]);
try {
const response = await fetch("/api/chat-with-tools", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
prompt: query,
previousC1Response: previousResponse,
}),
});
if (!response.ok) {
throw new Error(`API Error: ${response.status}`);
}
// Handle streaming response
const reader = response.body?.getReader();
if (!reader) throw new Error("No response body");
const decoder = new TextDecoder();
let accumulatedResponse = "";
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value);
const lines = chunk.split("\n");
for (const line of lines) {
if (line.startsWith("data: ")) {
try {
const data = JSON.parse(line.slice(6));
if (data.type === "tool_call") {
// Track which tools are being called
setActiveTools((prev) => [...prev, data.tool_name]);
} else if (data.type === "content") {
accumulatedResponse += data.content;
setC1Response(accumulatedResponse);
}
} catch (e) {
// Skip invalid JSON
}
}
}
}
setQuestion("");
} catch (err) {
console.error("Error:", err);
setC1Response(
`Error: ${err instanceof Error ? err.message : "Failed to get response"}`
);
} finally {
setIsLoading(false);
}
};
const handleSubmit = (e: React.FormEvent) => {
e.preventDefault();
makeApiCall(question);
};
// Example prompts to demonstrate tools
const examplePrompts = [
"Search the web for the latest AI news",
"Show me available products in the inventory",
"Create an order for 2 blue gloves size M and 1 red hat",
];
return (
<div className="tool-calling-container">
<header>
<h1>AI Assistant with Tools</h1>
<p>Ask me to search the web, check inventory, or create orders</p>
</header>
<div className="example-prompts">
<h3>Try these examples:</h3>
{examplePrompts.map((prompt, index) => (
<button
key={index}
onClick={() => {
setQuestion(prompt);
makeApiCall(prompt);
}}
className="example-button"
disabled={isLoading}
>
{prompt}
</button>
))}
</div>
<form onSubmit={handleSubmit} className="input-form">
<input
type="text"
value={question}
onChange={(e) => setQuestion(e.target.value)}
placeholder="Ask me to use a tool..."
className="question-input"
disabled={isLoading}
/>
<button
type="submit"
className="submit-button"
disabled={isLoading || !question.trim()}
>
{isLoading ? "Processing..." : "Send"}
</button>
</form>
{activeTools.length > 0 && (
<div className="active-tools">
<h4>Active Tools:</h4>
<div className="tool-badges">
{activeTools.map((tool, index) => (
<span key={index} className="tool-badge">
{tool}
</span>
))}
</div>
</div>
)}
{c1Response && (
<div className="response-container">
<ThemeProvider>
<C1Component
c1Response={c1Response}
isStreaming={isLoading}
updateMessage={(message) => setC1Response(message)}
onAction={({ llmFriendlyMessage, rawAction }) => {
console.log("Tool action:", rawAction);
if (!isLoading) {
makeApiCall(llmFriendlyMessage, c1Response);
}
}}
/>
</ThemeProvider>
</div>
)}
<div className="tool-info">
<h3>Available Tools</h3>
<ul>
<li>
<strong>web_search</strong> - Search the web for current information
</li>
<li>
<strong>lookup_product</strong> - Check product inventory
</li>
<li>
<strong>create_order</strong> - Create a new product order
</li>
</ul>
</div>
</div>
);
}
/**
* Backend API Example (route.ts or server.ts):
*
* import { z } from "zod";
* import zodToJsonSchema from "zod-to-json-schema";
* import OpenAI from "openai";
* import { TavilySearchAPIClient } from "@tavily/core";
*
* const webSearchSchema = z.object({
* query: z.string(),
* max_results: z.number().int().min(1).max(10).default(5),
* });
*
* const webSearchTool = {
* type: "function" as const,
* function: {
* name: "web_search",
* description: "Search the web for current information",
* parameters: zodToJsonSchema(webSearchSchema),
* },
* };
*
* const client = new OpenAI({
* baseURL: "https://api.thesys.dev/v1/embed",
* apiKey: process.env.THESYS_API_KEY,
* });
*
* const tavily = new TavilySearchAPIClient({
* apiKey: process.env.TAVILY_API_KEY,
* });
*
* export async function POST(req) {
* const { prompt } = await req.json();
*
* const stream = await client.beta.chat.completions.runTools({
* model: "c1/openai/gpt-5/v-20250930",
* messages: [
* {
* role: "system",
* content: "You are a helpful assistant with access to tools.",
* },
* { role: "user", content: prompt },
* ],
* stream: true,
* tools: [webSearchTool, productLookupTool, createOrderTool],
* toolChoice: "auto",
* });
*
* // Handle tool execution and streaming...
* }
*/