# Google Gemini File Search Templates This directory contains working example projects demonstrating different deployment patterns for Gemini File Search. ## Templates ### 🚧 basic-node-rag/ (TO BE IMPLEMENTED) Minimal Node.js/TypeScript example for learning and prototyping. **Features:** - Simple TypeScript setup - Create store → Upload documents → Query → Display citations - Single-file example (~200 lines) - Perfect for understanding core concepts **Use When:** - Learning File Search API - Quick prototyping - Building CLI tools ### 🚧 cloudflare-worker-rag/ (TO BE IMPLEMENTED) Edge deployment with Cloudflare Workers + R2 integration. **Features:** - Cloudflare Workers with @cloudflare/vite-plugin - R2 integration for document storage - Edge API endpoints (upload, query) - Hybrid architecture (Gemini File Search + Cloudflare edge) - Wrangler configuration **Use When:** - Building global edge applications - Integrating with Cloudflare stack (D1, R2, KV) - Need low-latency worldwide ### 🚧 nextjs-docs-search/ (TO BE IMPLEMENTED) Full-stack Next.js application with UI. **Features:** - Next.js 14+ App Router - Document upload UI with drag-and-drop - Real-time search interface - Citation rendering with source links - Metadata filtering UI - Tailwind CSS + shadcn/ui - TypeScript throughout **Use When:** - Building production documentation sites - Creating knowledge base UIs - Need full-stack app with frontend ## Structure Each template includes: - `README.md` - Setup and deployment instructions - `package.json` - Dependencies and scripts - `tsconfig.json` - TypeScript configuration - `.env.example` - Environment variables template - `src/` - Source code - Working example with sample data ## Development Status **Completed:** 0/3 templates (0%) **Priority:** 1. basic-node-rag (foundational example) 2. nextjs-docs-search (most practical for users) 3. cloudflare-worker-rag (advanced integration) ## Notes All templates demonstrate: - Proper error handling from SKILL.md - Recommended chunking configurations - Metadata schema best practices - Operation polling patterns - Cost-aware implementations