Files
gh-jezweb-claude-skills-ski…/plugin.lock.json
2025-11-30 08:24:54 +08:00

97 lines
3.8 KiB
JSON

{
"$schema": "internal://schemas/plugin.lock.v1.json",
"pluginId": "gh:jezweb/claude-skills:skills/google-gemini-embeddings",
"normalized": {
"repo": null,
"ref": "refs/tags/v20251128.0",
"commit": "3eec9dbe0059852e49e636452e0a821c9df951ee",
"treeHash": "d32186c1b5bd29d8407f20ba02a8b34b72ebc1129b8b283b4e7dd86121c68223",
"generatedAt": "2025-11-28T10:19:01.778501Z",
"toolVersion": "publish_plugins.py@0.2.0"
},
"origin": {
"remote": "git@github.com:zhongweili/42plugin-data.git",
"branch": "master",
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
},
"manifest": {
"name": "google-gemini-embeddings",
"description": "Build RAG systems, semantic search, and document clustering with Gemini embeddings API (gemini-embedding-001). Generate 768-3072 dimension embeddings for vector search, integrate with Cloudflare Vectorize, and use 8 task types (RETRIEVAL_QUERY, RETRIEVAL_DOCUMENT, SEMANTIC_SIMILARITY) for optimized retrieval. Use when: implementing vector search with Google embeddings, building retrieval-augmented generation systems, creating semantic search features, clustering documents by meaning, integrating",
"version": "1.0.0"
},
"content": {
"files": [
{
"path": "README.md",
"sha256": "1f46e3f051e6b3da1f714084462653572da6357fba271d34e3d795d88783588c"
},
{
"path": "SKILL.md",
"sha256": "aa57ada541daf096ce73125be3990a904786f2e4c36473bbbe9bced365fda1f4"
},
{
"path": "references/rag-patterns.md",
"sha256": "31e0ea9835b78c6fe83b739ec4c69041d65cbbc534ce52664b34fb793b53b383"
},
{
"path": "references/vectorize-integration.md",
"sha256": "0678343d31fe42107f47684ebdcf6e777552627e6fb5da6e78a8fb5681fa0e20"
},
{
"path": "references/model-comparison.md",
"sha256": "1953551d352af6b096218ee2a1529837109da27f6e26385921f6c8ce65f506aa"
},
{
"path": "references/top-errors.md",
"sha256": "a5b9257f02433cb1b44e7876dd5e8a89dbe4a9f4904e7ba36ddf2dbf7d144af7"
},
{
"path": "references/dimension-guide.md",
"sha256": "5c41d266dca8ff2a12768d4ce35af47f927db09e03cebcaeda73d59d3c4bc7dc"
},
{
"path": "scripts/check-versions.sh",
"sha256": "49818f290531867bbe241cfd070df8af0480cd5733de56509a4da13258a03214"
},
{
"path": ".claude-plugin/plugin.json",
"sha256": "312ef55fd4d3c5b89f679dc6949f96c7eb20ecbf1530b10c2a8b6983a4fbe82b"
},
{
"path": "templates/semantic-search.ts",
"sha256": "5dc40c756b75a91068baa89edd4f14f6fc7712dd01d1bf0cb1f5629662f6dd85"
},
{
"path": "templates/batch-embeddings.ts",
"sha256": "6bfd078bf9037ec32d83a32c1e9bc6c3a4e1201b942ed0be0405aff4680912e4"
},
{
"path": "templates/embeddings-fetch.ts",
"sha256": "16ec910406defa11f25d9c158055e3337a0861e238cf47a4631af517d2494512"
},
{
"path": "templates/package.json",
"sha256": "14c12dcd3c1eca05e2f14e154b3c12da3c1e268801fad215f82c0d62cdf2f08d"
},
{
"path": "templates/clustering.ts",
"sha256": "3275212f24a8ff9be017459eb02ed3993a46e3be99987059471f9bddb093c2f8"
},
{
"path": "templates/basic-embeddings.ts",
"sha256": "176747701f73e6dcb9da986f5a5d39426a81dbe91a318c5c3e46d6b5aed0b8c4"
},
{
"path": "templates/rag-with-vectorize.ts",
"sha256": "7075b1a9fc21b15d746225a2393b17f3dd72981e6fbd7ac821255bac5a056721"
}
],
"dirSha256": "d32186c1b5bd29d8407f20ba02a8b34b72ebc1129b8b283b4e7dd86121c68223"
},
"security": {
"scannedAt": null,
"scannerVersion": null,
"flags": []
}
}