22 KiB
name, description, license, metadata
| name | description | license | metadata | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| fastmcp | Build MCP servers in Python with FastMCP framework to expose tools, resources, and prompts to LLMs. Supports storage backends (memory/disk/Redis), middleware, OAuth Proxy, OpenAPI integration, and FastMCP Cloud deployment. Use when: creating MCP servers, defining tools or resources, implementing OAuth authentication, configuring storage backends for tokens/cache, adding middleware for logging/rate limiting, deploying to FastMCP Cloud, or troubleshooting module-level server, storage, lifespan, middleware order, circular imports, or OAuth errors. Keywords: FastMCP, MCP server Python, Model Context Protocol Python, fastmcp framework, mcp tools, mcp resources, mcp prompts, fastmcp storage, fastmcp memory storage, fastmcp disk storage, fastmcp redis, fastmcp dynamodb, fastmcp lifespan, fastmcp middleware, fastmcp oauth proxy, server composition mcp, fastmcp import, fastmcp mount, fastmcp cloud, fastmcp deployment, mcp authentication, fastmcp icons, openapi mcp, claude mcp server, fastmcp testing, storage misconfiguration, lifespan issues, middleware order, circular imports, module-level server, async await mcp | MIT |
|
FastMCP - Build MCP Servers in Python
FastMCP is a Python framework for building Model Context Protocol (MCP) servers that expose tools, resources, and prompts to Large Language Models like Claude. This skill provides production-tested patterns, error prevention, and deployment strategies for building robust MCP servers.
Quick Start
Installation
pip install fastmcp
# or
uv pip install fastmcp
Minimal Server
from fastmcp import FastMCP
# MUST be at module level for FastMCP Cloud
mcp = FastMCP("My Server")
@mcp.tool()
async def hello(name: str) -> str:
"""Say hello to someone."""
return f"Hello, {name}!"
if __name__ == "__main__":
mcp.run()
Run it:
# Local development
python server.py
# With FastMCP CLI
fastmcp dev server.py
# HTTP mode
python server.py --transport http --port 8000
What's New in v2.13.1 (November 2025)
Meta Parameter Support:
- ToolResult can return metadata alongside results (enables OpenAI Apps SDK integration)
- Client-sent meta parameters now supported
Authentication Improvements:
DebugTokenVerifierfor custom token validation during development- OCI (Oracle Cloud Infrastructure) authentication provider added
- Enhanced OAuth error handling and messaging
- Improved CSP policies for OAuth consent screens
Utilities & Developer Experience:
Image.to_data_uri()method added for easier icon embedding- Manual Client initialization control (defer connection until needed)
- 20+ bug fixes: URL encoding in Cursor deeplinks, OAuth metadata endpoint handling, Windows test timeouts, token cache expiration
Security Update:
- CVE-2025-61920: authlib updated to 1.6.5
- Safer Windows API validation for Cursor deeplink URLs
Known Compatibility:
- MCP SDK 1.21.1 excluded due to integration test failures (use 1.21.0 or 1.22.0+)
Core Concepts
Tools
Functions LLMs can call. Best practices: Clear names, comprehensive docstrings (LLMs read these!), strong type hints (Pydantic validates), structured returns, error handling.
@mcp.tool()
async def async_tool(url: str) -> dict: # Use async for I/O
async with httpx.AsyncClient() as client:
return (await client.get(url)).json()
Resources
Expose data to LLMs. URI schemes: data://, file://, resource://, info://, api://, or custom.
@mcp.resource("user://{user_id}/profile") # Template with parameters
async def get_user(user_id: str) -> dict: # CRITICAL: param names must match
return await fetch_user_from_db(user_id)
Prompts
Pre-configured prompts with parameters.
@mcp.prompt("analyze")
def analyze_prompt(topic: str) -> str:
return f"Analyze {topic} considering: state, challenges, opportunities, recommendations."
Context Features
Inject Context parameter (with type hint!) for advanced features:
Elicitation (User Input):
from fastmcp import Context
@mcp.tool()
async def confirm_action(action: str, context: Context) -> dict:
confirmed = await context.request_elicitation(prompt=f"Confirm {action}?", response_type=str)
return {"status": "completed" if confirmed.lower() == "yes" else "cancelled"}
Progress Tracking:
@mcp.tool()
async def batch_import(file_path: str, context: Context) -> dict:
data = await read_file(file_path)
for i, item in enumerate(data):
await context.report_progress(i + 1, len(data), f"Importing {i + 1}/{len(data)}")
await import_item(item)
return {"imported": len(data)}
Sampling (LLM calls from tools):
@mcp.tool()
async def enhance_text(text: str, context: Context) -> str:
response = await context.request_sampling(
messages=[{"role": "user", "content": f"Enhance: {text}"}],
temperature=0.7
)
return response["content"]
Storage Backends
Built on py-key-value-aio for OAuth tokens, response caching, persistent state.
Available Backends:
- Memory (default): Ephemeral, fast, dev-only
- Disk: Persistent, encrypted with
FernetEncryptionWrapper, platform-aware (Mac/Windows default) - Redis: Distributed, production, multi-instance
- Others: DynamoDB, MongoDB, Elasticsearch, Memcached, RocksDB, Valkey
Basic Usage:
from key_value.stores import DiskStore, RedisStore
from key_value.encryption import FernetEncryptionWrapper
from cryptography.fernet import Fernet
# Disk (persistent, single instance)
mcp = FastMCP("Server", storage=DiskStore(path="/app/data/storage"))
# Redis (distributed, production)
mcp = FastMCP("Server", storage=RedisStore(
host=os.getenv("REDIS_HOST"), password=os.getenv("REDIS_PASSWORD")
))
# Encrypted storage (recommended)
mcp = FastMCP("Server", storage=FernetEncryptionWrapper(
key_value=DiskStore(path="/app/data"),
fernet=Fernet(os.getenv("STORAGE_ENCRYPTION_KEY"))
))
Platform Defaults: Mac/Windows use Disk, Linux uses Memory. Override with storage parameter.
Server Lifespans
⚠️ Breaking Change in v2.13.0: Lifespan behavior changed from per-session to per-server-instance.
Initialize/cleanup resources once per server (NOT per session) - critical for DB connections, API clients.
from contextlib import asynccontextmanager
from dataclasses import dataclass
@dataclass
class AppContext:
db: Database
api_client: httpx.AsyncClient
@asynccontextmanager
async def app_lifespan(server: FastMCP):
"""Runs ONCE per server instance."""
db = await Database.connect(os.getenv("DATABASE_URL"))
api_client = httpx.AsyncClient(base_url=os.getenv("API_BASE_URL"), timeout=30.0)
try:
yield AppContext(db=db, api_client=api_client)
finally:
await db.disconnect()
await api_client.aclose()
mcp = FastMCP("Server", lifespan=app_lifespan)
# Access in tools
@mcp.tool()
async def query_db(sql: str, context: Context) -> list:
app_ctx = context.fastmcp_context.lifespan_context
return await app_ctx.db.query(sql)
ASGI Integration (FastAPI/Starlette):
mcp = FastMCP("Server", lifespan=mcp_lifespan)
app = FastAPI(lifespan=mcp.lifespan) # ✅ MUST pass lifespan!
State Management:
context.fastmcp_context.set_state(key, value) # Store
context.fastmcp_context.get_state(key, default=None) # Retrieve
Middleware System
8 Built-in Types: TimingMiddleware, ResponseCachingMiddleware, LoggingMiddleware, RateLimitingMiddleware, ErrorHandlingMiddleware, ToolInjectionMiddleware, PromptToolMiddleware, ResourceToolMiddleware
Execution Order (order matters!):
Request Flow:
→ ErrorHandlingMiddleware (catches errors)
→ TimingMiddleware (starts timer)
→ LoggingMiddleware (logs request)
→ RateLimitingMiddleware (checks rate limit)
→ ResponseCachingMiddleware (checks cache)
→ Tool/Resource Handler
Basic Usage:
from fastmcp.middleware import ErrorHandlingMiddleware, TimingMiddleware, LoggingMiddleware
mcp.add_middleware(ErrorHandlingMiddleware()) # First: catch errors
mcp.add_middleware(TimingMiddleware()) # Second: time requests
mcp.add_middleware(LoggingMiddleware(level="INFO"))
mcp.add_middleware(RateLimitingMiddleware(max_requests=100, window_seconds=60))
mcp.add_middleware(ResponseCachingMiddleware(ttl_seconds=300, storage=RedisStore()))
Custom Middleware:
from fastmcp.middleware import BaseMiddleware
class AccessControlMiddleware(BaseMiddleware):
async def on_call_tool(self, tool_name, arguments, context):
user = context.fastmcp_context.get_state("user_id")
if user not in self.allowed_users:
raise PermissionError(f"User not authorized")
return await self.next(tool_name, arguments, context)
Hook Hierarchy: on_message (all) → on_request/on_notification → on_call_tool/on_read_resource/on_get_prompt → on_list_* (list operations)
Server Composition
Two Strategies:
-
import_server()- Static snapshot: One-time copy at import, changes don't propagate, fast (no runtime delegation). Use for: Finalized component bundles. -
mount()- Dynamic link: Live runtime link, changes immediately visible, runtime delegation (slower). Use for: Modular runtime composition.
Basic Usage:
# Import (static)
main_server.import_server(api_server) # One-time copy
# Mount (dynamic)
main_server.mount(api_server, prefix="api") # Tools: api.fetch_data
main_server.mount(db_server, prefix="db") # Resources: resource://db/path
Tag Filtering:
@api_server.tool(tags=["public"])
def public_api(): pass
main_server.import_server(api_server, include_tags=["public"]) # Only public
main_server.mount(api_server, prefix="api", exclude_tags=["admin"]) # No admin
Resource Prefix Formats:
- Path (default since v2.4.0):
resource://prefix/path - Protocol (legacy):
prefix+resource://path
main_server.mount(subserver, prefix="api", resource_prefix_format="path")
OAuth & Authentication
4 Authentication Patterns:
- Token Validation (
JWTVerifier): Validate external tokens - External Identity Providers (
RemoteAuthProvider): OAuth 2.0/OIDC with DCR - OAuth Proxy (
OAuthProxy): Bridge to providers without DCR (GitHub, Google, Azure, AWS, Discord, Facebook) - Full OAuth (
OAuthProvider): Complete authorization server
Pattern 1: Token Validation
from fastmcp.auth import JWTVerifier
auth = JWTVerifier(issuer="https://auth.example.com", audience="my-server",
public_key=os.getenv("JWT_PUBLIC_KEY"))
mcp = FastMCP("Server", auth=auth)
Pattern 3: OAuth Proxy (Production)
from fastmcp.auth import OAuthProxy
from key_value.stores import RedisStore
from key_value.encryption import FernetEncryptionWrapper
from cryptography.fernet import Fernet
auth = OAuthProxy(
jwt_signing_key=os.environ["JWT_SIGNING_KEY"],
client_storage=FernetEncryptionWrapper(
key_value=RedisStore(host=os.getenv("REDIS_HOST"), password=os.getenv("REDIS_PASSWORD")),
fernet=Fernet(os.environ["STORAGE_ENCRYPTION_KEY"])
),
upstream_authorization_endpoint="https://github.com/login/oauth/authorize",
upstream_token_endpoint="https://github.com/login/oauth/access_token",
upstream_client_id=os.getenv("GITHUB_CLIENT_ID"),
upstream_client_secret=os.getenv("GITHUB_CLIENT_SECRET"),
enable_consent_screen=True # CRITICAL: Prevents confused deputy attacks
)
mcp = FastMCP("GitHub Auth", auth=auth)
OAuth Proxy Features: Token factory pattern (issues own JWTs), consent screens (prevents bypass), PKCE support, RFC 7662 token introspection
Supported Providers: GitHub, Google, Azure, AWS Cognito, Discord, Facebook, WorkOS, AuthKit, Descope, Scalekit, OCI (v2.13.1)
Icons, API Integration, Cloud Deployment
Icons: Add to servers, tools, resources, prompts. Use Icon(url, size), data URIs via Icon.from_file() or Image.to_data_uri() (v2.13.1).
API Integration (3 Patterns):
- Manual:
httpx.AsyncClientwith base_url/headers/timeout - OpenAPI Auto-Gen:
FastMCP.from_openapi(spec, client, route_maps)- GET→Resources/Templates, POST/PUT/DELETE→Tools - FastAPI Conversion:
FastMCP.from_fastapi(app, httpx_client_kwargs)
Cloud Deployment Critical Requirements:
- ❗ Module-level server named
mcp,server, orapp - PyPI dependencies only in requirements.txt
- Public GitHub repo (or accessible)
- Environment variables for config
# ✅ CORRECT: Module-level export
mcp = FastMCP("server") # At module level!
# ❌ WRONG: Function-wrapped
def create_server():
return FastMCP("server") # Too late for cloud!
Deployment: https://fastmcp.cloud → Sign in → Create Project → Select repo → Deploy
Client Config (Claude Desktop):
{"mcpServers": {"my-server": {"url": "https://project.fastmcp.app/mcp", "transport": "http"}}}
25 Common Errors (With Solutions)
Error 1: Missing Server Object
Error: RuntimeError: No server object found at module level
Cause: Server not exported at module level (FastMCP Cloud requirement)
Solution: mcp = FastMCP("server") at module level, not inside functions
Error 2: Async/Await Confusion
Error: RuntimeError: no running event loop, TypeError: object coroutine can't be used in 'await'
Cause: Mixing sync/async incorrectly
Solution: Use async def for tools with await, sync def for non-async code
Error 3: Context Not Injected
Error: TypeError: missing 1 required positional argument: 'context'
Cause: Missing Context type annotation
Solution: async def tool(context: Context) - type hint required!
Error 4: Resource URI Syntax
Error: ValueError: Invalid resource URI: missing scheme
Cause: Resource URI missing scheme prefix
Solution: Use @mcp.resource("data://config") not @mcp.resource("config")
Error 5: Resource Template Parameter Mismatch
Error: TypeError: get_user() missing 1 required positional argument
Cause: Function parameter names don't match URI template
Solution: @mcp.resource("user://{user_id}/profile") → def get_user(user_id: str) - names must match exactly
Error 6: Pydantic Validation Error
Error: ValidationError: value is not a valid integer
Cause: Type hints don't match provided data
Solution: Use Pydantic models: class Params(BaseModel): query: str = Field(min_length=1)
Error 7: Transport/Protocol Mismatch
Error: ConnectionError: Server using different transport
Cause: Client and server using incompatible transports
Solution: Match transports - stdio: mcp.run() + {"command": "python", "args": ["server.py"]}, HTTP: mcp.run(transport="http", port=8000) + {"url": "http://localhost:8000/mcp", "transport": "http"}
Error 8: Import Errors (Editable Package)
Error: ModuleNotFoundError: No module named 'my_package'
Cause: Package not properly installed
Solution: pip install -e . or use absolute imports or export PYTHONPATH="/path/to/project"
Error 9: Deprecation Warnings
Error: DeprecationWarning: 'mcp.settings' is deprecated
Cause: Using old FastMCP v1 API
Solution: Use os.getenv("API_KEY") instead of mcp.settings.get("API_KEY")
Error 10: Port Already in Use
Error: OSError: [Errno 48] Address already in use
Cause: Port 8000 already occupied
Solution: Use different port --port 8001 or kill process lsof -ti:8000 | xargs kill -9
Error 11: Schema Generation Failures
Error: TypeError: Object of type 'ndarray' is not JSON serializable
Cause: Unsupported type hints (NumPy arrays, custom classes)
Solution: Return JSON-compatible types: list[float] or convert: {"values": np_array.tolist()}
Error 12: JSON Serialization
Error: TypeError: Object of type 'datetime' is not JSON serializable
Cause: Returning non-JSON-serializable objects
Solution: Convert: datetime.now().isoformat(), bytes: .decode('utf-8')
Error 13: Circular Import Errors
Error: ImportError: cannot import name 'X' from partially initialized module
Cause: Circular dependency (common in cloud deployment)
Solution: Use direct imports in __init__.py: from .api_client import APIClient or lazy imports in functions
Error 14: Python Version Compatibility
Error: DeprecationWarning: datetime.utcnow() is deprecated
Cause: Using deprecated Python 3.12+ methods
Solution: Use datetime.now(timezone.utc) instead of datetime.utcnow()
Error 15: Import-Time Execution
Error: RuntimeError: Event loop is closed
Cause: Creating async resources at module import time
Solution: Use lazy initialization - create connection class with async connect() method, call when needed in tools
Error 16: Storage Backend Not Configured
Error: RuntimeError: OAuth tokens lost on restart, ValueError: Cache not persisting
Cause: Using default memory storage in production without persistence
Solution: Use encrypted DiskStore (single instance) or RedisStore (multi-instance) with FernetEncryptionWrapper
Error 17: Lifespan Not Passed to ASGI App
Error: RuntimeError: Database connection never initialized, Warning: MCP lifespan hooks not running
Cause: FastMCP with FastAPI/Starlette without passing lifespan (v2.13.0 requirement)
Solution: app = FastAPI(lifespan=mcp.lifespan) - MUST pass lifespan!
Error 18: Middleware Execution Order Error
Error: RuntimeError: Rate limit not checked before caching
Cause: Incorrect middleware ordering (order matters!)
Solution: ErrorHandling → Timing → Logging → RateLimiting → ResponseCaching (this order)
Error 19: Circular Middleware Dependencies
Error: RecursionError: maximum recursion depth exceeded
Cause: Middleware not calling self.next() or calling incorrectly
Solution: Always call result = await self.next(tool_name, arguments, context) in middleware hooks
Error 20: Import vs Mount Confusion
Error: RuntimeError: Subserver changes not reflected, ValueError: Unexpected tool namespacing
Cause: Using import_server() when mount() was needed (or vice versa)
Solution: import_server() for static bundles (one-time copy), mount() for dynamic composition (live link)
Error 21: Resource Prefix Format Mismatch
Error: ValueError: Resource not found: resource://api/users
Cause: Using wrong resource prefix format
Solution: Path format (default v2.4.0+): resource://prefix/path, Protocol (legacy): prefix+resource://path - set with resource_prefix_format="path"
Error 22: OAuth Proxy Without Consent Screen
Error: SecurityWarning: Authorization bypass possible
Cause: OAuth Proxy without consent screen (security vulnerability)
Solution: Always set enable_consent_screen=True - prevents confused deputy attacks (CRITICAL)
Error 23: Missing JWT Signing Key in Production
Error: ValueError: JWT signing key required for OAuth Proxy
Cause: OAuth Proxy missing jwt_signing_key
Solution: Generate: secrets.token_urlsafe(32), store in FASTMCP_JWT_SIGNING_KEY env var, pass to OAuthProxy(jwt_signing_key=...)
Error 24: Icon Data URI Format Error
Error: ValueError: Invalid data URI format
Cause: Incorrectly formatted data URI for icons
Solution: Use Icon.from_file("/path/icon.png", size="medium") or Image.to_data_uri() (v2.13.1) - don't manually format
Error 25: Lifespan Behavior Change (v2.13.0)
Error: Warning: Lifespan runs per-server, not per-session
Cause: Expecting v2.12 behavior (per-session) in v2.13.0+ (per-server)
Solution: v2.13.0+ lifespans run ONCE per server, not per session - use middleware for per-session logic
Production Patterns, Testing, CLI
4 Production Patterns:
- Utils Module: Single
utils.pywith Config class, format_success/error helpers - Connection Pooling: Singleton
httpx.AsyncClientwithget_client()class method - Retry with Backoff:
retry_with_backoff(func, max_retries=3, initial_delay=1.0, exponential_base=2.0) - Time-Based Caching:
TimeBasedCache(ttl=300)with.get()and.set()methods
Testing:
- Unit:
pytest+create_test_client(test_server)+await client.call_tool() - Integration:
Client("server.py")+list_tools()+call_tool()+list_resources()
CLI Commands:
fastmcp dev server.py # Run with inspector
fastmcp install server.py # Install to Claude Desktop
FASTMCP_LOG_LEVEL=DEBUG fastmcp dev # Debug logging
Best Practices: Factory pattern with module-level export, environment config with validation, comprehensive docstrings (LLMs read these!), health check resources
Project Structure:
- Simple:
server.py,requirements.txt,.env,README.md - Production:
src/(server.py, utils.py, tools/, resources/, prompts/),tests/,pyproject.toml
References & Summary
Official: https://github.com/jlowin/fastmcp, https://fastmcp.cloud, https://modelcontextprotocol.io, Context7: /jlowin/fastmcp
Related Skills: openai-api, claude-api, cloudflare-worker-base
Package Versions: fastmcp>=2.13.1, Python>=3.10, httpx, pydantic, py-key-value-aio, cryptography
15 Key Takeaways:
- Module-level server export (FastMCP Cloud)
- Persistent storage (Disk/Redis) for OAuth/caching
- Server lifespans for resource management
- Middleware order: errors → timing → logging → rate limiting → caching
- Composition:
import_server()(static) vsmount()(dynamic) - OAuth security: consent screens + encrypted storage + JWT signing
- Async/await properly (don't block event loop)
- Structured error handling
- Avoid circular imports
- Test locally (
fastmcp dev) - Environment variables (never hardcode secrets)
- Comprehensive docstrings (LLMs read!)
- Production patterns (utils, pooling, retry, caching)
- OpenAPI auto-generation
- Health checks + monitoring
Production Readiness: Encrypted storage, 4 auth patterns, 8 middleware types, modular composition, OAuth security (consent screens, PKCE, RFC 7662), response caching, connection pooling, timing middleware
Prevents 25 errors. 90-95% token savings.