Files
2025-11-30 08:24:38 +08:00

12 KiB

name, description, license
name description license
cloudflare-workers-ai Run LLMs and AI models on Cloudflare's global GPU network with Workers AI. Includes Llama 4, Gemma 3, Mistral 3.1, Flux image generation, BGE embeddings (2x faster, 2025), streaming support, and AI Gateway for cost tracking. Use when: implementing LLM inference, generating images, building RAG with embeddings, streaming AI responses, using AI Gateway, troubleshooting max_tokens defaults (breaking change 2025), BGE pooling parameter (not backwards compatible), or handling AI_ERROR, rate limits, model deprecations, token limits. Keywords: workers ai, cloudflare ai, ai bindings, llm workers, @cf/meta/llama-4-scout, @cf/google/gemma-3-12b-it, @cf/mistralai/mistral-small-3.1-24b-instruct, @cf/openai/gpt-oss-120b, workers ai models, ai inference, cloudflare llm, ai streaming, text generation ai, ai embeddings, bge pooling cls mean, image generation ai, workers ai rag, ai gateway, llama workers, flux image generation, deepgram aura, leonardo image generation, vision models ai, ai chat completion, AI_ERROR, rate limit ai, model not found, max_tokens breaking change, bge pooling backwards compatibility, model deprecations october 2025, token limit exceeded, neurons exceeded, workers ai hono, ai gateway workers, vercel ai sdk workers, openai compatible workers, workers ai vectorize, workers-ai-provider v2, ai sdk v5, lora adapters rank 32 MIT

Cloudflare Workers AI

Status: Production Ready Last Updated: 2025-11-25 Dependencies: cloudflare-worker-base (for Worker setup) Latest Versions: wrangler@4.50.0, @cloudflare/workers-types@4.20251125.0

Recent Updates (2025):

  • April 2025 - Performance: Llama 3.3 70B 2-4x faster (speculative decoding, prefix caching), BGE embeddings 2x faster
  • April 2025 - Breaking Changes: max_tokens now correctly defaults to 256 (was not respected), BGE pooling parameter (cls NOT backwards compatible with mean)
  • 2025 - New Models (14): Mistral 3.1 24B (vision+tools), Gemma 3 12B (128K context), EmbeddingGemma 300M, Llama 4 Scout, GPT-OSS 120B/20B, Qwen models (QwQ 32B, Coder 32B), Leonardo image gen, Deepgram Aura 2, Whisper v3 Turbo, IBM Granite, Nova 3
  • 2025 - Platform: Context windows API change (tokens not chars), unit-based pricing with per-model granularity, workers-ai-provider v2.0.0 (AI SDK v5), LoRA rank up to 32 (was 8), 100 adapters per account
  • October 2025: Model deprecations (use Llama 4, GPT-OSS instead)

Quick Start (5 Minutes)

// 1. Add AI binding to wrangler.jsonc
{ "ai": { "binding": "AI" } }

// 2. Run model with streaming (recommended)
export default {
  async fetch(request: Request, env: Env): Promise<Response> {
    const stream = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
      messages: [{ role: 'user', content: 'Tell me a story' }],
      stream: true, // Always stream for text generation!
    });

    return new Response(stream, {
      headers: { 'content-type': 'text/event-stream' },
    });
  },
};

Why streaming? Prevents buffering in memory, faster time-to-first-token, avoids Worker timeout issues.


API Reference

env.AI.run(
  model: string,
  inputs: ModelInputs,
  options?: { gateway?: { id: string; skipCache?: boolean } }
): Promise<ModelOutput | ReadableStream>

Model Selection Guide (Updated 2025)

Text Generation (LLMs)

Model Best For Rate Limit Size Notes
2025 Models
@cf/meta/llama-4-scout-17b-16e-instruct Latest Llama, general purpose 300/min 17B NEW 2025
@cf/openai/gpt-oss-120b Largest open-source GPT 300/min 120B NEW 2025
@cf/openai/gpt-oss-20b Smaller open-source GPT 300/min 20B NEW 2025
@cf/google/gemma-3-12b-it 128K context, 140+ languages 300/min 12B NEW 2025, vision
@cf/mistralai/mistral-small-3.1-24b-instruct Vision + tool calling 300/min 24B NEW 2025
@cf/qwen/qwq-32b Reasoning, complex tasks 300/min 32B NEW 2025
@cf/qwen/qwen2.5-coder-32b-instruct Coding specialist 300/min 32B NEW 2025
@cf/qwen/qwen3-30b-a3b-fp8 Fast quantized 300/min 30B NEW 2025
@cf/ibm-granite/granite-4.0-h-micro Small, efficient 300/min Micro NEW 2025
Performance (2025)
@cf/meta/llama-3.3-70b-instruct-fp8-fast 2-4x faster (2025 update) 300/min 70B Speculative decoding
@cf/meta/llama-3.1-8b-instruct-fp8-fast Fast 8B variant 300/min 8B -
Standard Models
@cf/meta/llama-3.1-8b-instruct General purpose 300/min 8B -
@cf/meta/llama-3.2-1b-instruct Ultra-fast, simple tasks 300/min 1B -
@cf/deepseek-ai/deepseek-r1-distill-qwen-32b Coding, technical 300/min 32B -

Text Embeddings (2x Faster - 2025)

Model Dimensions Best For Rate Limit Notes
@cf/google/embeddinggemma-300m 768 Best-in-class RAG 3000/min NEW 2025
@cf/baai/bge-base-en-v1.5 768 General RAG (2x faster) 3000/min pooling: "cls" recommended
@cf/baai/bge-large-en-v1.5 1024 High accuracy (2x faster) 1500/min pooling: "cls" recommended
@cf/baai/bge-small-en-v1.5 384 Fast, low storage (2x faster) 3000/min pooling: "cls" recommended
@cf/qwen/qwen3-embedding-0.6b 768 Qwen embeddings 3000/min NEW 2025

CRITICAL (2025): BGE models now support pooling: "cls" parameter (recommended) but NOT backwards compatible with pooling: "mean" (default).

Image Generation

Model Best For Rate Limit Notes
@cf/black-forest-labs/flux-1-schnell High quality, photorealistic 720/min -
@cf/leonardo/lucid-origin Leonardo AI style 720/min NEW 2025
@cf/leonardo/phoenix-1.0 Leonardo AI variant 720/min NEW 2025
@cf/stabilityai/stable-diffusion-xl-base-1.0 General purpose 720/min -

Vision Models

Model Best For Rate Limit Notes
@cf/meta/llama-3.2-11b-vision-instruct Image understanding 720/min -
@cf/google/gemma-3-12b-it Vision + text (128K context) 300/min NEW 2025

Audio Models (2025)

Model Type Rate Limit Notes
@cf/deepgram/aura-2-en Text-to-speech (English) 720/min NEW 2025
@cf/deepgram/aura-2-es Text-to-speech (Spanish) 720/min NEW 2025
@cf/deepgram/nova-3 Speech-to-text (+ WebSocket) 720/min NEW 2025
@cf/openai/whisper-large-v3-turbo Speech-to-text (faster) 720/min NEW 2025

Common Patterns

RAG (Retrieval Augmented Generation)

// 1. Generate embeddings
const embeddings = await env.AI.run('@cf/baai/bge-base-en-v1.5', { text: [userQuery] });

// 2. Search Vectorize
const matches = await env.VECTORIZE.query(embeddings.data[0], { topK: 3 });
const context = matches.matches.map((m) => m.metadata.text).join('\n\n');

// 3. Generate with context
const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [
    { role: 'system', content: `Answer using this context:\n${context}` },
    { role: 'user', content: userQuery },
  ],
  stream: true,
});

Structured Output with Zod

import { z } from 'zod';

const Schema = z.object({ name: z.string(), items: z.array(z.string()) });

const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [{
    role: 'user',
    content: `Generate JSON matching: ${JSON.stringify(Schema.shape)}`
  }],
});

const validated = Schema.parse(JSON.parse(response.response));

AI Gateway Integration

Provides caching, logging, cost tracking, and analytics for AI requests.

const response = await env.AI.run(
  '@cf/meta/llama-3.1-8b-instruct',
  { prompt: 'Hello' },
  { gateway: { id: 'my-gateway', skipCache: false } }
);

// Access logs and send feedback
const gateway = env.AI.gateway('my-gateway');
await gateway.patchLog(env.AI.aiGatewayLogId, {
  feedback: { rating: 1, comment: 'Great response' },
});

Benefits: Cost tracking, caching (reduces duplicate inference), logging, rate limiting, analytics.


Rate Limits & Pricing (Updated 2025)

Rate Limits (per minute)

Task Type Default Limit Notes
Text Generation 300/min Some fast models: 400-1500/min
Text Embeddings 3000/min BGE-large: 1500/min
Image Generation 720/min All image models
Vision Models 720/min Image understanding
Audio (TTS/STT) 720/min Deepgram, Whisper
Translation 720/min M2M100, Opus MT
Classification 2000/min Text classification

Pricing (Unit-Based, Billed in Neurons - 2025)

Free Tier:

  • 10,000 neurons per day
  • Resets daily at 00:00 UTC

Paid Tier ($0.011 per 1,000 neurons):

  • 10,000 neurons/day included
  • Unlimited usage above free allocation

2025 Model Costs (per 1M tokens):

Model Input Output Notes
2025 Models
Llama 4 Scout 17B $0.270 $0.850 NEW 2025
GPT-OSS 120B $0.350 $0.750 NEW 2025
GPT-OSS 20B $0.200 $0.300 NEW 2025
Gemma 3 12B $0.345 $0.556 NEW 2025
Mistral 3.1 24B $0.351 $0.555 NEW 2025
Qwen QwQ 32B $0.660 $1.000 NEW 2025
Qwen Coder 32B $0.660 $1.000 NEW 2025
IBM Granite Micro $0.017 $0.112 NEW 2025
EmbeddingGemma 300M $0.012 N/A NEW 2025
Qwen3 Embedding 0.6B $0.012 N/A NEW 2025
Performance (2025)
Llama 3.3 70B Fast $0.293 $2.253 2-4x faster
Llama 3.1 8B FP8 Fast $0.045 $0.384 Fast variant
Standard Models
Llama 3.2 1B $0.027 $0.201 -
Llama 3.1 8B $0.282 $0.827 -
Deepseek R1 32B $0.497 $4.881 -
BGE-base (2x faster) $0.067 N/A 2025 speedup
BGE-large (2x faster) $0.204 N/A 2025 speedup
Image Models (2025)
Flux 1 Schnell $0.0000528 per 512x512 tile -
Leonardo Lucid $0.006996 per 512x512 tile NEW 2025
Leonardo Phoenix $0.005830 per 512x512 tile NEW 2025
Audio Models (2025)
Deepgram Aura 2 $0.030 per 1k chars NEW 2025
Deepgram Nova 3 $0.0052 per audio min NEW 2025
Whisper v3 Turbo $0.0005 per audio min NEW 2025

Error Handling with Retry

async function runAIWithRetry(
  env: Env,
  model: string,
  inputs: any,
  maxRetries = 3
): Promise<any> {
  let lastError: Error;

  for (let i = 0; i < maxRetries; i++) {
    try {
      return await env.AI.run(model, inputs);
    } catch (error) {
      lastError = error as Error;

      // Rate limit - retry with exponential backoff
      if (lastError.message.toLowerCase().includes('rate limit')) {
        await new Promise((resolve) => setTimeout(resolve, Math.pow(2, i) * 1000));
        continue;
      }

      throw error; // Other errors - fail immediately
    }
  }

  throw lastError!;
}

OpenAI Compatibility

import OpenAI from 'openai';

const openai = new OpenAI({
  apiKey: env.CLOUDFLARE_API_KEY,
  baseURL: `https://api.cloudflare.com/client/v4/accounts/${env.ACCOUNT_ID}/ai/v1`,
});

// Chat completions
await openai.chat.completions.create({
  model: '@cf/meta/llama-3.1-8b-instruct',
  messages: [{ role: 'user', content: 'Hello!' }],
});

Endpoints: /v1/chat/completions, /v1/embeddings


Vercel AI SDK Integration (workers-ai-provider v2.0.0)

import { createWorkersAI } from 'workers-ai-provider'; // v2.0.0 with AI SDK v5
import { generateText, streamText } from 'ai';

const workersai = createWorkersAI({ binding: env.AI });

// Generate or stream
await generateText({
  model: workersai('@cf/meta/llama-3.1-8b-instruct'),
  prompt: 'Write a poem',
});

References