Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:21:43 +08:00
commit 39b1550012
8 changed files with 1042 additions and 0 deletions

View File

@@ -0,0 +1,15 @@
{
"name": "004-jeremy-google-cloud-agent-sdk",
"description": "Google Cloud Agent Development Kit (ADK) and Agent Starter Pack mastery - build containerized multi-agent systems with production-ready templates, deploy to Cloud Run/GKE/Agent Engine, RAG agents, ReAct agents, and multi-agent orchestration.",
"version": "1.0.0",
"author": {
"name": "Jeremy Longshore",
"email": "jeremy@intentsolutions.io"
},
"skills": [
"./skills"
],
"commands": [
"./commands"
]
}

3
README.md Normal file
View File

@@ -0,0 +1,3 @@
# 004-jeremy-google-cloud-agent-sdk
Google Cloud Agent Development Kit (ADK) and Agent Starter Pack mastery - build containerized multi-agent systems with production-ready templates, deploy to Cloud Run/GKE/Agent Engine, RAG agents, ReAct agents, and multi-agent orchestration.

376
commands/create-agent.md Normal file
View File

@@ -0,0 +1,376 @@
---
name: create-agent
description: Create a production-ready Google Cloud agent using ADK and Agent Starter Pack with CI/CD, deployment, and testing infrastructure
model: sonnet
---
# Create Production-Ready Google Cloud Agent
Scaffold a complete agent project using Google's Agent Development Kit (ADK) and Agent Starter Pack with production-ready infrastructure.
## What This Does
1. **Choose Agent Template**: Select from 5 production templates
2. **Configure Deployment**: Select deployment target (Cloud Run, GKE, Agent Engine)
3. **Generate Project**: Create complete project structure with CI/CD
4. **Setup Instructions**: Provide step-by-step deployment guide
## Available Templates
### 1. adk_base (ReAct Agent)
**Best for**: General-purpose agents with tool use
**Includes**: Search, code execution, custom tools
**Use case**: Q&A agents, research assistants, task automation
### 2. agentic_rag (RAG Agent)
**Best for**: Document-based Q&A
**Includes**: Vertex AI Search, Vector Search integration
**Use case**: Knowledge bases, documentation agents, customer support
### 3. langgraph_base_react (LangGraph)
**Best for**: Complex workflows with state management
**Includes**: LangGraph orchestration, custom nodes
**Use case**: Multi-step processes, conditional logic, state tracking
### 4. crewai_coding_crew (Multi-Agent)
**Best for**: Collaborative multi-agent systems
**Includes**: Specialized agents, role-based coordination
**Use case**: Software development, research teams, content creation
### 5. adk_live (Multimodal RAG)
**Best for**: Audio/video/text processing
**Includes**: Multimodal understanding, live streaming
**Use case**: Video analysis, audio transcription, media processing
## Deployment Targets
### Cloud Run (Serverless)
**Pros:**
- Automatic scaling 0→N
- Pay-per-use pricing
- Fast deployment
- Custom domains
**Cons:**
- 60-minute timeout
- Limited memory (8GB max)
**Best for:** Web-facing agents, APIs, low-traffic services
### Agent Engine (Managed)
**Pros:**
- Fully managed runtime
- Built-in observability
- Auto-scaling
- Integrated with Vertex AI
**Cons:**
- Vertex AI pricing
- Less customization
**Best for:** Production agents, high-scale deployment
### GKE (Kubernetes)
**Pros:**
- Full control
- Advanced networking
- Resource management
- Multi-cluster
**Cons:**
- Higher complexity
- Cluster management overhead
**Best for:** Complex multi-agent systems, enterprise deployment
## Usage
```bash
/create-agent
```
Then provide:
- Agent name
- Template choice
- Deployment target
- GCP project ID
- Region preference
## Example Workflow
**Input:**
```
Agent name: customer-support-agent
Template: agentic_rag
Deployment: cloud_run
Project: my-gcp-project
Region: us-central1
```
**Generated Structure:**
```
customer-support-agent/
├── src/
│ ├── agent.py # Main agent implementation
│ ├── tools/
│ │ ├── search_tool.py
│ │ └── custom_tools.py
│ ├── config.py # Configuration
│ └── prompts/
│ └── system_prompt.txt
├── deployment/
│ ├── Dockerfile
│ ├── cloudbuild.yaml
│ ├── cloud-run.yaml
│ └── terraform/
│ ├── main.tf
│ ├── variables.tf
│ └── outputs.tf
├── tests/
│ ├── unit/
│ │ ├── test_agent.py
│ │ └── test_tools.py
│ └── integration/
│ └── test_e2e.py
├── .github/workflows/
│ ├── test.yaml # CI testing
│ └── deploy.yaml # CD deployment
├── requirements.txt
├── pyproject.toml
├── README.md
└── .env.example
```
## Step-by-Step Deployment
### 1. Install Dependencies
```bash
cd customer-support-agent
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
```
### 2. Configure GCP
```bash
# Authenticate
gcloud auth login
gcloud config set project my-gcp-project
# Enable APIs
gcloud services enable \
aiplatform.googleapis.com \
run.googleapis.com \
cloudbuild.googleapis.com
```
### 3. Set Up Environment
```bash
# Copy example env
cp .env.example .env
# Edit with your values
vim .env
```
**Required variables:**
```env
GOOGLE_CLOUD_PROJECT=my-gcp-project
GOOGLE_CLOUD_REGION=us-central1
GOOGLE_APPLICATION_CREDENTIALS=/path/to/key.json
VERTEX_AI_SEARCH_DATASTORE=datastore-id
```
### 4. Test Locally
```bash
# Run agent locally
python src/agent.py
# Or use ADK CLI
adk serve --port 8080
# Test endpoint
curl http://localhost:8080/query \
-H "Content-Type: application/json" \
-d '{"question": "What are your support hours?"}'
```
### 5. Run Tests
```bash
# Unit tests
pytest tests/unit/
# Integration tests
pytest tests/integration/
# Coverage report
pytest --cov=src tests/
```
### 6. Deploy to Cloud Run
```bash
# Using ADK CLI (recommended)
adk deploy \
--target cloud_run \
--region us-central1 \
--allow-unauthenticated
# Or using gcloud
gcloud run deploy customer-support-agent \
--source . \
--region us-central1 \
--allow-unauthenticated \
--memory 2Gi \
--cpu 2 \
--timeout 300s
```
### 7. Setup CI/CD
```bash
# Connect GitHub repo
gh repo create customer-support-agent --public
git init
git add .
git commit -m "Initial agent setup"
git branch -M main
git remote add origin https://github.com/USER/customer-support-agent.git
git push -u origin main
# GitHub Actions automatically trigger on push
```
### 8. Monitor Deployment
```bash
# View logs
gcloud run services logs read customer-support-agent \
--region us-central1 \
--limit 100 \
--format json
# Check metrics
gcloud monitoring dashboards create \
--config-from-file monitoring/dashboard.json
```
## Advanced Features
### RAG Integration
```python
# Automatically included in agentic_rag template
from vertexai.preview.rag import VectorSearchTool
vector_search = VectorSearchTool(
index_endpoint="projects/PROJECT/locations/REGION/indexEndpoints/INDEX",
deployed_index_id="deployed_index"
)
agent.add_tool(vector_search)
```
### Multi-Agent Orchestration
```python
# Automatically included in crewai_coding_crew template
from crewai import Agent, Task, Crew
researcher = Agent(
role="Researcher",
goal="Research technical topics",
tools=[search_tool]
)
writer = Agent(
role="Writer",
goal="Write documentation",
tools=[write_tool]
)
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, write_task]
)
```
### Custom Tools
```python
# Add custom tools to any agent
from vertexai.preview.agents import FunctionTool
@FunctionTool
def check_inventory(product_id: str) -> dict:
"""Check product inventory levels"""
# Your custom logic
return {"in_stock": True, "quantity": 42}
agent.add_tool(check_inventory)
```
## Cost Estimation
**Development:**
- Local testing: Free
- CI/CD (GitHub Actions): Free (2000 min/month)
**Production (Cloud Run):**
- Idle: $0 (scales to zero)
- Active: ~$0.10/hour at moderate load
- Gemini API: $3.50/1M tokens
**Monthly estimate for typical agent:**
- Infrastructure: $50-100
- AI API costs: $100-300
- Total: $150-400/month
## Troubleshooting
### Common Issues
**1. Authentication Errors**
```bash
# Fix: Set credentials
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/key.json
gcloud auth application-default login
```
**2. Timeout Errors**
```bash
# Fix: Increase Cloud Run timeout
gcloud run services update customer-support-agent \
--timeout 300s
```
**3. Memory Issues**
```bash
# Fix: Increase memory
gcloud run services update customer-support-agent \
--memory 4Gi
```
**4. Rate Limiting**
```bash
# Fix: Implement exponential backoff
# Code automatically included in templates
```
## Next Steps
After deployment:
1. **Add custom tools** for your use case
2. **Configure RAG data sources** (if using agentic_rag)
3. **Set up monitoring alerts**
4. **Implement evaluation metrics**
5. **Scale based on traffic**
## Resources
**Documentation:**
- ADK Quickstart: https://google.github.io/adk-docs/
- Agent Starter Pack: https://github.com/GoogleCloudPlatform/agent-starter-pack
- Cloud Run Docs: https://cloud.google.com/run/docs
**Examples:**
- Agent Gallery: https://cloud.google.com/vertex-ai/generative-ai/docs/samples
- GitHub Samples: https://github.com/GoogleCloudPlatform/generative-ai
---
**This command scaffolds production-ready agent projects in <5 minutes with full CI/CD, testing, and deployment automation.**

61
plugin.lock.json Normal file
View File

@@ -0,0 +1,61 @@
{
"$schema": "internal://schemas/plugin.lock.v1.json",
"pluginId": "gh:jeremylongshore/claude-code-plugins-plus:plugins/productivity/004-jeremy-google-cloud-agent-sdk",
"normalized": {
"repo": null,
"ref": "refs/tags/v20251128.0",
"commit": "156f0162d98d3d4e34356274f2a6a3891e4f10d7",
"treeHash": "fd59a4e88bd1356e48c63f8415022905ab54a8bb1181a9a3052928601d784ef0",
"generatedAt": "2025-11-28T10:18:02.285330Z",
"toolVersion": "publish_plugins.py@0.2.0"
},
"origin": {
"remote": "git@github.com:zhongweili/42plugin-data.git",
"branch": "master",
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
},
"manifest": {
"name": "004-jeremy-google-cloud-agent-sdk",
"description": "Google Cloud Agent Development Kit (ADK) and Agent Starter Pack mastery - build containerized multi-agent systems with production-ready templates, deploy to Cloud Run/GKE/Agent Engine, RAG agents, ReAct agents, and multi-agent orchestration.",
"version": "1.0.0"
},
"content": {
"files": [
{
"path": "README.md",
"sha256": "702484aff7b742b872677177791a9ced7e9d71953118a59d291aedbf41e93868"
},
{
"path": ".claude-plugin/plugin.json",
"sha256": "3d5c586be4c5bf914a39a52cfba8bed88fe8425c03d3fce13bf1e8ac53785cb4"
},
{
"path": "commands/create-agent.md",
"sha256": "221851c3671fcc66e1ed7807b621407b6b7fd8975e73a37f775429cb50cd37e9"
},
{
"path": "skills/agent-sdk-master/SKILL.md",
"sha256": "7e27a38edbdc140cd508b7283de121603ec54558e0a811980fb2a1e92a95698f"
},
{
"path": "skills/agent-sdk-master/references/README.md",
"sha256": "db9680278e03728fef93321fc76c435387bc0c8fe1dcc9870bdf2fa236ea8ac3"
},
{
"path": "skills/agent-sdk-master/scripts/README.md",
"sha256": "f042646ad5b685556c044080a6b73202a490fb8288be8219328faefc12d5a30e"
},
{
"path": "skills/agent-sdk-master/assets/README.md",
"sha256": "33bfb083485b48c78a1738368c52cd9f202724a414bce507db181d8291b83aec"
}
],
"dirSha256": "fd59a4e88bd1356e48c63f8415022905ab54a8bb1181a9a3052928601d784ef0"
},
"security": {
"scannedAt": null,
"scannerVersion": null,
"flags": []
}
}

View File

@@ -0,0 +1,511 @@
---
name: Google Cloud Agent SDK Master
description: |
Automatic activation for ALL Google Cloud Agent Development Kit (ADK) and Agent Starter Pack operations - multi-agent systems, containerized deployment, RAG agents, and production orchestration.
**TRIGGER PHRASES:**
- "adk", "agent development kit", "agent starter pack", "multi-agent", "build agent"
- "cloud run agent", "gke deployment", "agent engine", "containerized agent"
- "rag agent", "react agent", "agent orchestration", "agent templates"
**AUTO-INVOKES FOR:**
- Agent creation and scaffolding
- Multi-agent system design
- Containerized agent deployment
- RAG (Retrieval-Augmented Generation) implementation
- CI/CD pipeline setup for agents
- Agent evaluation and monitoring
allowed-tools: Read, WebFetch, WebSearch, Grep
version: 1.0.0
---
# Google Cloud Agent SDK Master - Production-Ready Agent Systems
This Agent Skill provides comprehensive mastery of Google's Agent Development Kit (ADK) and Agent Starter Pack for building and deploying production-grade containerized agents.
## Core Capabilities
### 🤖 Agent Development Kit (ADK)
**Framework Overview:**
- **Open-source Python framework** from Google
- Same framework powering Google Agentspace and CES
- Build production agents in <100 lines of code
- Model-agnostic (optimized for Gemini)
- Deployment-agnostic (local, Cloud Run, GKE, Agent Engine)
**Supported Agent Types:**
1. **LLM Agents**: Dynamic routing with intelligence
2. **Workflow Agents**:
- Sequential: Linear execution
- Loop: Iterative processing
- Parallel: Concurrent execution
3. **Custom Agents**: User-defined implementations
4. **Multi-agent Systems**: Hierarchical coordination
**Key Features:**
- Flexible orchestration (workflow & LLM-driven)
- Tool ecosystem (search, code execution, custom functions)
- Third-party integrations (LangChain, CrewAI)
- Agents-as-tools capability
- Built-in evaluation framework
- Cloud Trace integration
### 📦 Agent Starter Pack
**Production Templates:**
1. **adk_base** - ReAct agent using ADK
2. **agentic_rag** - Document retrieval + Q&A with search
3. **langgraph_base_react** - LangGraph ReAct implementation
4. **crewai_coding_crew** - Multi-agent coding system
5. **adk_live** - Multimodal RAG (audio/video/text)
**Infrastructure Automation:**
- CI/CD setup with single command
- GitHub Actions or Cloud Build pipelines
- Multi-environment support (dev, staging, prod)
- Automated testing and evaluation
- Deployment rollback mechanisms
### 🚀 Deployment Targets
**1. Vertex AI Agent Engine**
- Fully managed runtime
- Auto-scaling and load balancing
- Built-in observability
- Serverless architecture
- Best for: Production-scale agents
**2. Cloud Run**
- Containerized serverless
- Pay-per-use pricing
- Custom domain support
- Traffic splitting
- Best for: Web-facing agents
**3. Google Kubernetes Engine (GKE)**
- Full container orchestration
- Advanced networking
- Resource management
- Multi-cluster support
- Best for: Complex multi-agent systems
**4. Local/Docker**
- Development and testing
- Custom infrastructure
- On-premises deployment
- Best for: POC and debugging
### 🔧 Technical Implementation
**Installation:**
```bash
# Agent Starter Pack (recommended)
pip install agent-starter-pack
# or direct from GitHub
uvx agent-starter-pack create my-agent
# ADK only
pip install google-cloud-aiplatform[adk,agent_engines]>=1.111
```
**Create Agent (ADK):**
```python
from google.cloud.aiplatform import agent
from vertexai.preview.agents import ADKAgent
# Simple ReAct agent
@agent.adk_agent
class MyAgent(ADKAgent):
def __init__(self):
super().__init__(
model="gemini-2.5-pro",
tools=[search_tool, code_exec_tool]
)
def run(self, query: str):
return self.generate(query)
# Multi-agent orchestration
class OrchestratorAgent(ADKAgent):
def __init__(self):
self.research_agent = ResearchAgent()
self.analysis_agent = AnalysisAgent()
self.writer_agent = WriterAgent()
def run(self, task: str):
research = self.research_agent.run(task)
analysis = self.analysis_agent.run(research)
output = self.writer_agent.run(analysis)
return output
```
**Using Agent Starter Pack:**
```bash
# Create project with template
uvx agent-starter-pack create my-rag-agent \
--template agentic_rag \
--deployment cloud_run
# Generates complete structure:
my-rag-agent/
├── src/
│ ├── agent.py # Agent implementation
│ ├── tools/ # Custom tools
│ └── config.py # Configuration
├── deployment/
│ ├── Dockerfile
│ ├── cloudbuild.yaml
│ └── terraform/
├── tests/
│ ├── unit_tests.py
│ └── integration_tests.py
└── .github/workflows/ # CI/CD pipelines
```
**Deploy to Cloud Run:**
```bash
# Using ADK CLI
adk deploy \
--target cloud_run \
--region us-central1 \
--service-account sa@project.iam.gserviceaccount.com
# Manual with Docker
docker build -t gcr.io/PROJECT/agent:latest .
docker push gcr.io/PROJECT/agent:latest
gcloud run deploy agent \
--image gcr.io/PROJECT/agent:latest \
--region us-central1 \
--allow-unauthenticated
```
**Deploy to Agent Engine:**
```bash
# Using Agent Starter Pack
asp deploy \
--env production \
--target agent_engine
# Manual deployment
from google.cloud.aiplatform import agent_engines
agent_engines.deploy_agent(
agent_id="my-agent",
project="PROJECT_ID",
location="us-central1"
)
```
### 📊 RAG Agent Implementation
**Vector Search Integration:**
```python
from vertexai.preview.rag import VectorSearchTool
from google.cloud import aiplatform
# Set up vector search
vector_search = VectorSearchTool(
index_endpoint="projects/PROJECT/locations/LOCATION/indexEndpoints/INDEX_ID",
deployed_index_id="deployed_index"
)
# RAG agent with ADK
class RAGAgent(ADKAgent):
def __init__(self):
super().__init__(
model="gemini-2.5-pro",
tools=[vector_search, web_search_tool]
)
def run(self, query: str):
# Retrieves relevant docs automatically
response = self.generate(
f"Answer this using retrieved context: {query}"
)
return response
```
**Vertex AI Search Integration:**
```python
from vertexai.preview.search import VertexAISearchTool
# Enterprise search integration
vertex_search = VertexAISearchTool(
data_store_id="DATA_STORE_ID",
project="PROJECT_ID"
)
agent = ADKAgent(
model="gemini-2.5-pro",
tools=[vertex_search]
)
```
### 🔄 CI/CD Automation
**GitHub Actions (auto-generated):**
```yaml
name: Deploy Agent
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Test Agent
run: pytest tests/
- name: Deploy to Cloud Run
run: |
gcloud run deploy agent \
--source . \
--region us-central1
```
**Cloud Build Pipeline:**
```yaml
steps:
# Build container
- name: 'gcr.io/cloud-builders/docker'
args: ['build', '-t', 'gcr.io/$PROJECT_ID/agent', '.']
# Run tests
- name: 'gcr.io/$PROJECT_ID/agent'
args: ['pytest', 'tests/']
# Deploy to Cloud Run
- name: 'gcr.io/cloud-builders/gcloud'
args:
- 'run'
- 'deploy'
- 'agent'
- '--image=gcr.io/$PROJECT_ID/agent'
- '--region=us-central1'
```
### 🎯 Multi-Agent Orchestration
**Hierarchical Agents:**
```python
# Coordinator agent with specialized sub-agents
class ProjectManagerAgent(ADKAgent):
def __init__(self):
self.researcher = ResearchAgent()
self.analyst = AnalysisAgent()
self.writer = WriterAgent()
self.reviewer = ReviewAgent()
def run(self, project_brief: str):
# Coordinate multiple agents
research = self.researcher.run(project_brief)
analysis = self.analyst.run(research)
draft = self.writer.run(analysis)
final = self.reviewer.run(draft)
return final
```
**Parallel Agent Execution:**
```python
import asyncio
class ParallelResearchAgent(ADKAgent):
async def research_topic(self, topics: list[str]):
# Run multiple agents concurrently
tasks = [
self.specialized_agent(topic)
for topic in topics
]
results = await asyncio.gather(*tasks)
return self.synthesize(results)
```
### 📈 Evaluation & Monitoring
**Built-in Evaluation:**
```python
from google.cloud.aiplatform import agent_evaluation
# Define evaluation metrics
eval_config = agent_evaluation.EvaluationConfig(
metrics=["accuracy", "relevance", "safety"],
test_dataset="gs://bucket/eval_data.jsonl"
)
# Run evaluation
results = agent.evaluate(eval_config)
print(f"Accuracy: {results.accuracy}")
print(f"Relevance: {results.relevance}")
```
**Cloud Trace Integration:**
```python
from google.cloud import trace_v1
# Automatic tracing
@traced_agent
class MonitoredAgent(ADKAgent):
def run(self, query: str):
# All calls automatically traced
with self.trace_span("retrieval"):
docs = self.retrieve(query)
with self.trace_span("generation"):
response = self.generate(query, docs)
return response
```
### 🔒 Security & Best Practices
**1. Service Account Management:**
```bash
# Create minimal-permission service account
gcloud iam service-accounts create agent-sa \
--display-name "Agent Service Account"
# Grant only required permissions
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="serviceAccount:agent-sa@PROJECT.iam.gserviceaccount.com" \
--role="roles/aiplatform.user"
```
**2. Secret Management:**
```python
from google.cloud import secretmanager
def get_api_key():
client = secretmanager.SecretManagerServiceClient()
name = "projects/PROJECT/secrets/api-key/versions/latest"
response = client.access_secret_version(name=name)
return response.payload.data.decode('UTF-8')
```
**3. VPC Service Controls:**
```bash
# Enable VPC SC for data security
gcloud access-context-manager perimeters create agent-perimeter \
--resources=projects/PROJECT_ID \
--restricted-services=aiplatform.googleapis.com
```
### 💰 Cost Optimization
**Strategies:**
- Use Gemini 2.5 Flash for most operations
- Cache embeddings for RAG systems
- Implement request batching
- Use preemptible GKE nodes
- Monitor token usage in Cloud Monitoring
**Pricing Examples:**
- Cloud Run: $0.00024/GB-second
- Agent Engine: Pay-per-request pricing
- GKE: Standard cluster costs
- Gemini API: $3.50/1M tokens (Pro)
### 📚 Reference Architecture
**Production Agent System:**
```
┌─────────────────┐
│ Load Balancer │
└────────┬────────┘
┌────▼────┐
│Cloud Run│ (Agent containers)
└────┬────┘
┌────▼──────────┐
│ Agent Engine │ (Orchestration)
└────┬──────────┘
┌────▼────────────────┐
│ Vertex AI Search │ (RAG)
│ Vector Search │
│ Gemini 2.5 Pro │
└─────────────────────┘
```
### 🎯 Best Practices for Jeremy
**1. Start with Templates:**
```bash
# Use Agent Starter Pack templates
uvx agent-starter-pack create my-agent --template agentic_rag
```
**2. Local Development:**
```bash
# Test locally first
adk serve --port 8080
curl http://localhost:8080/query -d '{"question": "test"}'
```
**3. Gradual Deployment:**
```bash
# Deploy to dev → staging → prod
asp deploy --env dev
# Test thoroughly
asp deploy --env staging
# Final production push
asp deploy --env production
```
**4. Monitor Everything:**
- Enable Cloud Trace
- Set up error reporting
- Track token usage
- Monitor response times
- Set up alerting
### 📖 Official Documentation
**Core Resources:**
- ADK Docs: https://google.github.io/adk-docs/
- Agent Starter Pack: https://github.com/GoogleCloudPlatform/agent-starter-pack
- Agent Engine: https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview
- Agent Builder: https://cloud.google.com/products/agent-builder
**Tutorials:**
- Building AI Agents: https://codelabs.developers.google.com/devsite/codelabs/building-ai-agents-vertexai
- Multi-agent Systems: https://cloud.google.com/blog/products/ai-machine-learning/build-and-manage-multi-system-agents-with-vertex-ai
## When This Skill Activates
This skill automatically activates when you mention:
- Agent development, ADK, or Agent Starter Pack
- Multi-agent systems or orchestration
- Containerized agent deployment
- Cloud Run, GKE, or Agent Engine deployment
- RAG agents or ReAct agents
- Agent templates or scaffolding
- CI/CD for agents
- Production agent systems
## Integration with Other Services
**Google Cloud:**
- Vertex AI (Gemini, Search, Vector Search)
- Cloud Storage (data storage)
- Cloud Functions (triggers)
- Cloud Scheduler (automation)
- Cloud Logging & Monitoring
**Third-party:**
- LangChain integration
- CrewAI orchestration
- Custom tool frameworks
## Success Metrics
**Track:**
- Agent response time (target: <2s)
- Evaluation scores (target: >85% accuracy)
- Deployment frequency (target: daily)
- System uptime (target: 99.9%)
- Cost per query (target: <$0.01)
---
**This skill makes Jeremy a Google Cloud agent architecture expert with instant access to ADK, Agent Starter Pack, and production deployment patterns.**

View File

@@ -0,0 +1,26 @@
# Skill Assets
This directory contains static assets used by this skill.
## Purpose
Assets can include:
- Configuration files (JSON, YAML)
- Data files
- Templates
- Schemas
- Test fixtures
## Guidelines
- Keep assets small and focused
- Document asset purpose and format
- Use standard file formats
- Include schema validation where applicable
## Common Asset Types
- **config.json** - Configuration templates
- **schema.json** - JSON schemas
- **template.yaml** - YAML templates
- **test-data.json** - Test fixtures

View File

@@ -0,0 +1,26 @@
# Skill References
This directory contains reference materials that enhance this skill's capabilities.
## Purpose
References can include:
- Code examples
- Style guides
- Best practices documentation
- Template files
- Configuration examples
## Guidelines
- Keep references concise and actionable
- Use markdown for documentation
- Include clear examples
- Link to external resources when appropriate
## Types of References
- **examples.md** - Usage examples
- **style-guide.md** - Coding standards
- **templates/** - Reusable templates
- **patterns.md** - Design patterns

View File

@@ -0,0 +1,24 @@
# Skill Scripts
This directory contains optional helper scripts that support this skill's functionality.
## Purpose
Scripts here can be:
- Referenced by the skill for automation
- Used as examples for users
- Executed during skill activation
## Guidelines
- All scripts should be well-documented
- Include usage examples in comments
- Make scripts executable (`chmod +x`)
- Use `#!/bin/bash` or `#!/usr/bin/env python3` shebangs
## Adding Scripts
1. Create script file (e.g., `analyze.sh`, `process.py`)
2. Add documentation header
3. Make executable: `chmod +x script-name.sh`
4. Test thoroughly before committing