4.2 KiB
4.2 KiB
name, description
| name | description |
|---|---|
| openbb-research | AI-powered investment research using OpenBB - comprehensive analysis, thesis generation, risk assessment, actionable insights |
OpenBB AI Investment Research
AI-powered comprehensive investment research combining OpenBB data with Claude's analytical capabilities.
Usage
/openbb-research SYMBOL [--depth deep|quick] [--focus thesis|risks|opportunities]
What This Command Does
Conducts comprehensive AI-powered investment research by combining multiple OpenBB data sources with advanced analysis.
Workflow
1. Data Aggregation
from openbb import obb
symbol = "AAPL"
# Gather comprehensive data
data = {
"price": obb.equity.price.historical(symbol=symbol, period="1y"),
"fundamentals": obb.equity.fundamental.metrics(symbol=symbol),
"analyst": obb.equity.estimates.analyst(symbol=symbol),
"news": obb.equity.news(symbol=symbol, limit=10),
"peers": obb.equity.compare.peers(symbol=symbol),
"insider": obb.equity.ownership.insider(symbol=symbol)
}
2. Investment Thesis Generation
print(f"\n📋 Investment Thesis for {symbol}")
print(f"{'='*60}")
# Business Analysis
print(f"\n1. Business Quality:")
print(f" - Competitive moats identified")
print(f" - Revenue growth trajectory")
print(f" - Margin trends and sustainability")
print(f" - Market position and share")
# Financial Health
print(f"\n2. Financial Strength:")
print(f" - Balance sheet assessment")
print(f" - Cash flow generation")
print(f" - Capital allocation efficiency")
print(f" - Debt levels and coverage")
# Valuation
print(f"\n3. Valuation Assessment:")
print(f" - P/E vs sector average")
print(f" - PEG ratio analysis")
print(f" - DCF model implications")
print(f" - Historical valuation ranges")
# Catalysts
print(f"\n4. Key Catalysts:")
print(f" - Upcoming earnings/events")
print(f" - Product launches")
print(f" - Regulatory developments")
print(f" - Industry trends")
3. Risk Assessment
print(f"\n⚠️ Risk Factors:")
risks = []
# Check technical risks
if data["price"].rsi[-1] > 75:
risks.append("Overbought conditions - potential pullback risk")
# Check fundamental risks
if data["fundamentals"].debt_to_equity > 1.5:
risks.append("High leverage - financial risk elevated")
# Check market risks
if data["price"].volatility > 50:
risks.append("High volatility - price uncertainty")
for i, risk in enumerate(risks, 1):
print(f" {i}. {risk}")
4. Opportunity Analysis
print(f"\n💡 Investment Opportunities:")
opportunities = []
if data["analyst"].rating_score > 4.0:
opportunities.append("Strong analyst support - positive sentiment")
if data["insider"].net_buy_sell > 0:
opportunities.append("Insider buying - management confidence")
if data["fundamentals"].roe > 20:
opportunities.append("High ROE - efficient capital use")
for i, opp in enumerate(opportunities, 1):
print(f" {i}. {opp}")
5. Actionable Recommendations
print(f"\n🎯 Recommendation:")
# Decision matrix
score = 0
score += 2 if data["analyst"].rating_score > 4.0 else 0
score += 2 if data["fundamentals"].roe > 15 else 0
score += 1 if data["price"].trend == "bullish" else 0
score -= 1 if data["fundamentals"].pe_ratio > 30 else 0
if score >= 4:
rating = "BUY"
action = "Consider accumulating position"
elif score >= 2:
rating = "HOLD"
action = "Monitor closely, hold current position"
else:
rating = "AVOID"
action = "Wait for better entry point"
print(f" Rating: {rating}")
print(f" Action: {action}")
print(f" Confidence: {score}/5")
Examples
# Deep research report
/openbb-research AAPL --depth=deep
# Quick thesis
/openbb-research MSFT --depth=quick --focus=thesis
# Risk analysis
/openbb-research TSLA --focus=risks
Output Format
- Executive Summary
- Investment Thesis
- Financial Analysis
- Valuation Assessment
- Risk Factors
- Opportunities
- Recommendation & Price Targets
- Monitoring Checklist
Integration
- Export reports to PDF/Markdown
- Track recommendations over time
- Compare with analyst consensus
- Portfolio integration via
/openbb-portfolio