--- name: openbb-research description: AI-powered investment research using OpenBB - comprehensive analysis, thesis generation, risk assessment, actionable insights --- # OpenBB AI Investment Research AI-powered comprehensive investment research combining OpenBB data with Claude's analytical capabilities. ## Usage ```bash /openbb-research SYMBOL [--depth deep|quick] [--focus thesis|risks|opportunities] ``` ## What This Command Does Conducts comprehensive AI-powered investment research by combining multiple OpenBB data sources with advanced analysis. ## Workflow ### 1. Data Aggregation ```python from openbb import obb symbol = "AAPL" # Gather comprehensive data data = { "price": obb.equity.price.historical(symbol=symbol, period="1y"), "fundamentals": obb.equity.fundamental.metrics(symbol=symbol), "analyst": obb.equity.estimates.analyst(symbol=symbol), "news": obb.equity.news(symbol=symbol, limit=10), "peers": obb.equity.compare.peers(symbol=symbol), "insider": obb.equity.ownership.insider(symbol=symbol) } ``` ### 2. Investment Thesis Generation ```python print(f"\n📋 Investment Thesis for {symbol}") print(f"{'='*60}") # Business Analysis print(f"\n1. Business Quality:") print(f" - Competitive moats identified") print(f" - Revenue growth trajectory") print(f" - Margin trends and sustainability") print(f" - Market position and share") # Financial Health print(f"\n2. Financial Strength:") print(f" - Balance sheet assessment") print(f" - Cash flow generation") print(f" - Capital allocation efficiency") print(f" - Debt levels and coverage") # Valuation print(f"\n3. Valuation Assessment:") print(f" - P/E vs sector average") print(f" - PEG ratio analysis") print(f" - DCF model implications") print(f" - Historical valuation ranges") # Catalysts print(f"\n4. Key Catalysts:") print(f" - Upcoming earnings/events") print(f" - Product launches") print(f" - Regulatory developments") print(f" - Industry trends") ``` ### 3. Risk Assessment ```python print(f"\n⚠️ Risk Factors:") risks = [] # Check technical risks if data["price"].rsi[-1] > 75: risks.append("Overbought conditions - potential pullback risk") # Check fundamental risks if data["fundamentals"].debt_to_equity > 1.5: risks.append("High leverage - financial risk elevated") # Check market risks if data["price"].volatility > 50: risks.append("High volatility - price uncertainty") for i, risk in enumerate(risks, 1): print(f" {i}. {risk}") ``` ### 4. Opportunity Analysis ```python print(f"\n💡 Investment Opportunities:") opportunities = [] if data["analyst"].rating_score > 4.0: opportunities.append("Strong analyst support - positive sentiment") if data["insider"].net_buy_sell > 0: opportunities.append("Insider buying - management confidence") if data["fundamentals"].roe > 20: opportunities.append("High ROE - efficient capital use") for i, opp in enumerate(opportunities, 1): print(f" {i}. {opp}") ``` ### 5. Actionable Recommendations ```python print(f"\n🎯 Recommendation:") # Decision matrix score = 0 score += 2 if data["analyst"].rating_score > 4.0 else 0 score += 2 if data["fundamentals"].roe > 15 else 0 score += 1 if data["price"].trend == "bullish" else 0 score -= 1 if data["fundamentals"].pe_ratio > 30 else 0 if score >= 4: rating = "BUY" action = "Consider accumulating position" elif score >= 2: rating = "HOLD" action = "Monitor closely, hold current position" else: rating = "AVOID" action = "Wait for better entry point" print(f" Rating: {rating}") print(f" Action: {action}") print(f" Confidence: {score}/5") ``` ## Examples ```bash # Deep research report /openbb-research AAPL --depth=deep # Quick thesis /openbb-research MSFT --depth=quick --focus=thesis # Risk analysis /openbb-research TSLA --focus=risks ``` ## Output Format 1. Executive Summary 2. Investment Thesis 3. Financial Analysis 4. Valuation Assessment 5. Risk Factors 6. Opportunities 7. Recommendation & Price Targets 8. Monitoring Checklist ## Integration - Export reports to PDF/Markdown - Track recommendations over time - Compare with analyst consensus - Portfolio integration via `/openbb-portfolio`