--- name: excel-pivot-wizard description: | Generate pivot tables and charts from raw data using natural language - analyze sales by region, summarize data by category, and create visualizations effortlessly Activates when you request "excel pivot wizard" functionality. allowed-tools: Read, Write, Edit, Grep, Glob, Bash version: 1.0.0 --- # Excel Pivot Wizard Creates pivot tables and visualizations from raw data using natural language commands. ## When to Invoke This Skill Automatically load this Skill when the user asks to: - "Create a pivot table" - "Analyze [data] by [dimension]" - "Summarize sales by region" - "Show revenue breakdown" - "Group data by category" - "Cross-tab analysis" - "Compare [X] across [Y]" ## Capabilities ### Pivot Table Generation - **Rows**: Group data by one or more fields - **Columns**: Cross-tabulate across another dimension - **Values**: Aggregate functions (sum, average, count, min, max) - **Filters**: Slice data by specific criteria - **Calculated Fields**: Create custom formulas ### Visualization - Column/bar charts for comparisons - Line charts for trends over time - Pie charts for composition - Combo charts for multiple metrics - Conditional formatting for heatmaps ## Common Analysis Patterns ### Pattern 1: Single Dimension Summary **Request:** "Show total sales by region" **Output:** ``` | Region | Total Sales | |-----------|-------------| | Northeast | $1,250,000 | | Southeast | $980,000 | | Midwest | $1,100,000 | | West | $1,450,000 | | Total | $4,780,000 | ``` ### Pattern 2: Cross-Tabulation **Request:** "Sales by region and product category" **Output:** ``` | Region | Electronics | Clothing | Home Goods | Total | |-----------|-------------|----------|------------|-----------| | Northeast | $400K | $500K | $350K | $1,250K | | Southeast | $300K | $380K | $300K | $980K | | Midwest | $450K | $350K | $300K | $1,100K | | West | $550K | $500K | $400K | $1,450K | | Total | $1,700K | $1,730K | $1,350K | $4,780K | ``` ### Pattern 3: Time-Based Trending **Request:** "Monthly revenue trend for 2024" **Output:** ``` Line chart showing: - X-axis: Jan, Feb, Mar, ..., Dec - Y-axis: Revenue - Line: Monthly revenue with data labels ``` ### Pattern 4: Top N Analysis **Request:** "Top 10 products by revenue" **Output:** ``` | Rank | Product | Revenue | % of Total | |------|---------------|-----------|------------| | 1 | Product A | $450,000 | 9.4% | | 2 | Product B | $380,000 | 7.9% | | 3 | Product C | $350,000 | 7.3% | | ... | ... | ... | ... | | 10 | Product J | $180,000 | 3.8% | | | Top 10 Total | $2,850,000| 59.6% | | | All Others | $1,930,000| 40.4% | | | Grand Total | $4,780,000| 100.0% | ``` ## Step-by-Step Workflow ### 1. Understand the Data Ask clarifying questions if needed: - What does each column represent? - What grain is the data? (transaction-level, daily summary, etc.) - What fields should be aggregated vs grouped? ### 2. Interpret the Request Parse natural language into pivot table structure: **"Show sales by region and month"** → ``` Rows: Region Columns: Month Values: Sum of Sales ``` **"Average order value by customer segment"** → ``` Rows: Customer Segment Values: Average of Order Value ``` **"Count of orders by product category and sales rep"** → ``` Rows: Product Category Columns: Sales Rep Values: Count of Orders ``` ### 3. Build the Pivot Table Use Excel MCP server to: 1. Create pivot table on new sheet 2. Set row fields 3. Set column fields (if cross-tab) 4. Set value fields with aggregation function 5. Add filters/slicers if requested 6. Apply formatting (currency, thousands separator, etc.) ### 4. Add Enhancements **Conditional Formatting:** ``` - Top 10% values: Dark green - Bottom 10% values: Dark red - Color scale for heatmap effect ``` **Calculated Fields:** ``` - Profit Margin % = (Revenue - Cost) / Revenue - Growth % = (This Year - Last Year) / Last Year - % of Total = Value / Grand Total ``` **Sorting:** ``` - Largest to smallest by default - Or chronological for dates ``` ### 5. Create Visualization If visualization is requested or would be helpful: **For Comparisons:** Column chart **For Trends:** Line chart **For Composition:** Pie/donut chart **For Correlations:** Scatter plot **For Multiple Metrics:** Combo chart (column + line) ## Example Interactions ### Example 1: Sales Analysis **User:** "Analyze sales by region and product category" **Skill Response:** ``` I'll create a pivot table to analyze sales by region and product category. Looking at your data, I see: - 5,234 transaction rows - Date range: Jan 1 - Oct 27, 2025 - 4 regions, 12 product categories Creating pivot table... ✅ Pivot Table Created! 📊 Sales by Region and Product Category: Top Insights: 1. West region leads with $1.45M (30.3% of total) 2. Electronics is #1 category at $1.70M (35.6%) 3. Northeast + Electronics = $400K (highest cell) 4. Southeast underperforming in Home Goods ($300K vs avg $338K) Visualization: Added column chart comparing regions Would you like me to: - Add a slicer to filter by quarter? - Calculate % of total for each cell? - Create a separate view for top products? ``` ### Example 2: Time Trend **User:** "Show monthly revenue trend" **Skill Response:** ``` Creating monthly revenue trend analysis... I see data spanning 10 months (Jan-Oct 2025). ✅ Trend Analysis Complete! 📈 Monthly Revenue: Key Findings: - Strong start: Q1 averaged $520K/month - Dip in summer: Jun-Aug averaged $420K/month - Recovery: Sep-Oct back to $510K/month - YTD Total: $4.78M - Average: $478K/month Created line chart with: - Trend line showing slight upward trajectory - Data labels for easy reading - Target line at $500K (if provided) 📊 Growth Rates: - Jan-Oct: +8.3% overall - Best month: March ($575K) - Weakest month: August ($385K) Recommendation: Investigate summer seasonality (Jun-Aug dip) ``` ### Example 3: Customer Segmentation **User:** "Show average order value by customer segment" **Skill Response:** ``` Analyzing average order value (AOV) across customer segments... ✅ Customer Segmentation Analysis Complete! | Segment | Orders | Total Revenue | Avg Order Value | % of Revenue | |---------------|--------|---------------|-----------------|--------------| | Enterprise | 245 | $1,850,000 | $7,551 | 38.7% | | Mid-Market | 892 | $1,920,000 | $2,152 | 40.2% | | Small Business| 2,456 | $835,000 | $340 | 17.5% | | Consumer | 1,641 | $175,000 | $107 | 3.7% | | Total | 5,234 | $4,780,000 | $913 | 100.0% | 🎯 Key Insights: - Enterprise: Highest AOV ($7.5K) but only 4.7% of orders - Mid-Market: Sweet spot (40% of revenue, $2.2K AOV) - Small Business: High volume (47% of orders) but low AOV - Consumer: Explore if worth serving (low AOV, high volume) Created bar chart showing AOV by segment with order count overlay. 💡 Strategic Questions: 1. Should we focus more resources on Enterprise (high AOV)? 2. Can we up-sell Small Business to Mid-Market? 3. Is Consumer segment profitable at $107 AOV? ``` ### Example 4: Product Performance **User:** "Which products are driving the most revenue?" **Skill Response:** ``` Creating product revenue ranking... ✅ Top Products Analysis Complete! 📊 Top 10 Products (out of 147 total): | Rank | Product | Revenue | Orders | AOV | % of Total | |------|------------------|-----------|--------|--------|------------| | 1 | Pro Laptop 15" | $450,000 | 385 | $1,169 | 9.4% | | 2 | Business Suite | $380,000 | 892 | $426 | 7.9% | | 3 | Smart Display | $350,000 | 1,245 | $281 | 7.3% | | 4 | Wireless Buds | $310,000 | 2,156 | $144 | 6.5% | | 5 | Office Chair Pro | $295,000 | 428 | $689 | 6.2% | | 6 | Standing Desk | $280,000 | 356 | $787 | 5.9% | | 7 | Monitor 27" | $265,000 | 487 | $544 | 5.5% | | 8 | Keyboard Mech | $245,000 | 1,823 | $134 | 5.1% | | 9 | Webcam 4K | $220,000 | 678 | $324 | 4.6% | | 10 | Mouse Wireless | $195,000 | 2,145 | $91 | 4.1% | | | **Top 10 Total** | **$2,990,000** | | | **62.5%** | | | All Others (137) | $1,790,000 | | | 37.5% | | | **Grand Total** | **$4,780,000** | | | **100.0%** | 🎯 Insights: - Top 10 products = 62.5% of revenue (strong concentration) - Pro Laptop alone = 9.4% of total revenue - High-volume low-AOV products: Wireless Buds, Keyboard, Mouse - High-AOV low-volume products: Pro Laptop, Standing Desk Created: - Bar chart: Top 10 products by revenue - Pareto chart: Cumulative % of revenue 💡 Strategic Implications: 1. Focus inventory on Top 20 products (likely 80% of revenue) 2. Bundle high-volume + high-margin items 3. Wireless Buds: Explore upsell to Pro Buds (higher margin?) ``` ## Advanced Features ### Calculated Fields **Request:** "Show profit margin by product category" **Response:** ``` I'll add a calculated field for profit margin. Assuming you have Cost and Revenue columns, I'll calculate: Profit Margin % = (Revenue - Cost) / Revenue × 100% | Category | Revenue | Cost | Profit | Margin % | |-------------|---------|---------|---------|----------| | Electronics | $1,700K | $1,020K | $680K | 40.0% | | Clothing | $1,730K | $1,125K | $605K | 35.0% | | Home Goods | $1,350K | $945K | $405K | 30.0% | | Total | $4,780K | $3,090K | $1,690K | 35.4% | Electronics has the highest margin (40%) despite not being the highest revenue category. ``` ### Slicers & Filters **Request:** "Add filters for date range and region" **Response:** ``` I've added slicers for: 1. Date Range (select quarters or specific months) 2. Region (select one or multiple regions) 3. Product Category (filter to specific categories) These slicers are linked to the pivot table - any selection will update the data automatically. Try clicking Q3 in the date slicer to see summer performance! ``` ### Multiple Aggregations **Request:** "Show sum and average of sales by region" **Response:** ``` | Region | Total Sales | Avg Sale | Order Count | |-----------|-------------|----------|-------------| | Northeast | $1,250,000 | $625 | 2,000 | | Southeast | $980,000 | $490 | 2,000 | | Midwest | $1,100,000 | $524 | 2,100 | | West | $1,450,000 | $690 | 2,100 | Interesting: Southeast has lowest average sale despite same order count as Northeast. This suggests smaller basket sizes in Southeast - worth investigating! ``` ## Formatting Best Practices The Skill applies professional formatting: ### Numbers ``` Revenue: $1,250,000 or $1.25M (use M for millions) Counts: 2,000 (thousands separator) Percentages: 35.0% (1 decimal) ``` ### Conditional Formatting ``` Top performers: Green highlight Bottom performers: Red highlight Heatmap: Color gradient from red (low) to green (high) ``` ### Layout ``` - Bold headers - Freeze top row and left column - Subtotals and grand totals - Alternating row colors for readability ``` ## Resources See resources folder for: - `REFERENCE.md`: Pivot table best practices - `examples/`: Sample pivot tables for common analyses ## Limitations This Skill creates standard pivot tables for: - Summarization and aggregation - Cross-tabulation - Basic calculations (sum, average, count) For advanced analysis, you may need: - Power Pivot (for complex data models) - Pivot charts with custom formatting - Integration with external data sources - Real-time data refresh ## Version History - v1.0.0 (2025-10-27): Initial release with core pivot table generation