Initial commit
This commit is contained in:
421
skills/excel-pivot-wizard/SKILL.md
Normal file
421
skills/excel-pivot-wizard/SKILL.md
Normal file
@@ -0,0 +1,421 @@
|
||||
---
|
||||
name: excel-pivot-wizard
|
||||
description: |
|
||||
Generate pivot tables and charts from raw data using natural language - analyze sales by region, summarize data by category, and create visualizations effortlessly Activates when you request "excel pivot wizard" functionality.
|
||||
allowed-tools: Read, Write, Edit, Grep, Glob, Bash
|
||||
version: 1.0.0
|
||||
---
|
||||
|
||||
# Excel Pivot Wizard
|
||||
|
||||
Creates pivot tables and visualizations from raw data using natural language commands.
|
||||
|
||||
## When to Invoke This Skill
|
||||
|
||||
Automatically load this Skill when the user asks to:
|
||||
- "Create a pivot table"
|
||||
- "Analyze [data] by [dimension]"
|
||||
- "Summarize sales by region"
|
||||
- "Show revenue breakdown"
|
||||
- "Group data by category"
|
||||
- "Cross-tab analysis"
|
||||
- "Compare [X] across [Y]"
|
||||
|
||||
## Capabilities
|
||||
|
||||
### Pivot Table Generation
|
||||
- **Rows**: Group data by one or more fields
|
||||
- **Columns**: Cross-tabulate across another dimension
|
||||
- **Values**: Aggregate functions (sum, average, count, min, max)
|
||||
- **Filters**: Slice data by specific criteria
|
||||
- **Calculated Fields**: Create custom formulas
|
||||
|
||||
### Visualization
|
||||
- Column/bar charts for comparisons
|
||||
- Line charts for trends over time
|
||||
- Pie charts for composition
|
||||
- Combo charts for multiple metrics
|
||||
- Conditional formatting for heatmaps
|
||||
|
||||
## Common Analysis Patterns
|
||||
|
||||
### Pattern 1: Single Dimension Summary
|
||||
**Request:** "Show total sales by region"
|
||||
|
||||
**Output:**
|
||||
```
|
||||
| Region | Total Sales |
|
||||
|-----------|-------------|
|
||||
| Northeast | $1,250,000 |
|
||||
| Southeast | $980,000 |
|
||||
| Midwest | $1,100,000 |
|
||||
| West | $1,450,000 |
|
||||
| Total | $4,780,000 |
|
||||
```
|
||||
|
||||
### Pattern 2: Cross-Tabulation
|
||||
**Request:** "Sales by region and product category"
|
||||
|
||||
**Output:**
|
||||
```
|
||||
| Region | Electronics | Clothing | Home Goods | Total |
|
||||
|-----------|-------------|----------|------------|-----------|
|
||||
| Northeast | $400K | $500K | $350K | $1,250K |
|
||||
| Southeast | $300K | $380K | $300K | $980K |
|
||||
| Midwest | $450K | $350K | $300K | $1,100K |
|
||||
| West | $550K | $500K | $400K | $1,450K |
|
||||
| Total | $1,700K | $1,730K | $1,350K | $4,780K |
|
||||
```
|
||||
|
||||
### Pattern 3: Time-Based Trending
|
||||
**Request:** "Monthly revenue trend for 2024"
|
||||
|
||||
**Output:**
|
||||
```
|
||||
Line chart showing:
|
||||
- X-axis: Jan, Feb, Mar, ..., Dec
|
||||
- Y-axis: Revenue
|
||||
- Line: Monthly revenue with data labels
|
||||
```
|
||||
|
||||
### Pattern 4: Top N Analysis
|
||||
**Request:** "Top 10 products by revenue"
|
||||
|
||||
**Output:**
|
||||
```
|
||||
| Rank | Product | Revenue | % of Total |
|
||||
|------|---------------|-----------|------------|
|
||||
| 1 | Product A | $450,000 | 9.4% |
|
||||
| 2 | Product B | $380,000 | 7.9% |
|
||||
| 3 | Product C | $350,000 | 7.3% |
|
||||
| ... | ... | ... | ... |
|
||||
| 10 | Product J | $180,000 | 3.8% |
|
||||
| | Top 10 Total | $2,850,000| 59.6% |
|
||||
| | All Others | $1,930,000| 40.4% |
|
||||
| | Grand Total | $4,780,000| 100.0% |
|
||||
```
|
||||
|
||||
## Step-by-Step Workflow
|
||||
|
||||
### 1. Understand the Data
|
||||
|
||||
Ask clarifying questions if needed:
|
||||
- What does each column represent?
|
||||
- What grain is the data? (transaction-level, daily summary, etc.)
|
||||
- What fields should be aggregated vs grouped?
|
||||
|
||||
### 2. Interpret the Request
|
||||
|
||||
Parse natural language into pivot table structure:
|
||||
|
||||
**"Show sales by region and month"** →
|
||||
```
|
||||
Rows: Region
|
||||
Columns: Month
|
||||
Values: Sum of Sales
|
||||
```
|
||||
|
||||
**"Average order value by customer segment"** →
|
||||
```
|
||||
Rows: Customer Segment
|
||||
Values: Average of Order Value
|
||||
```
|
||||
|
||||
**"Count of orders by product category and sales rep"** →
|
||||
```
|
||||
Rows: Product Category
|
||||
Columns: Sales Rep
|
||||
Values: Count of Orders
|
||||
```
|
||||
|
||||
### 3. Build the Pivot Table
|
||||
|
||||
Use Excel MCP server to:
|
||||
1. Create pivot table on new sheet
|
||||
2. Set row fields
|
||||
3. Set column fields (if cross-tab)
|
||||
4. Set value fields with aggregation function
|
||||
5. Add filters/slicers if requested
|
||||
6. Apply formatting (currency, thousands separator, etc.)
|
||||
|
||||
### 4. Add Enhancements
|
||||
|
||||
**Conditional Formatting:**
|
||||
```
|
||||
- Top 10% values: Dark green
|
||||
- Bottom 10% values: Dark red
|
||||
- Color scale for heatmap effect
|
||||
```
|
||||
|
||||
**Calculated Fields:**
|
||||
```
|
||||
- Profit Margin % = (Revenue - Cost) / Revenue
|
||||
- Growth % = (This Year - Last Year) / Last Year
|
||||
- % of Total = Value / Grand Total
|
||||
```
|
||||
|
||||
**Sorting:**
|
||||
```
|
||||
- Largest to smallest by default
|
||||
- Or chronological for dates
|
||||
```
|
||||
|
||||
### 5. Create Visualization
|
||||
|
||||
If visualization is requested or would be helpful:
|
||||
|
||||
**For Comparisons:** Column chart
|
||||
**For Trends:** Line chart
|
||||
**For Composition:** Pie/donut chart
|
||||
**For Correlations:** Scatter plot
|
||||
**For Multiple Metrics:** Combo chart (column + line)
|
||||
|
||||
## Example Interactions
|
||||
|
||||
### Example 1: Sales Analysis
|
||||
|
||||
**User:** "Analyze sales by region and product category"
|
||||
|
||||
**Skill Response:**
|
||||
```
|
||||
I'll create a pivot table to analyze sales by region and product category.
|
||||
|
||||
Looking at your data, I see:
|
||||
- 5,234 transaction rows
|
||||
- Date range: Jan 1 - Oct 27, 2025
|
||||
- 4 regions, 12 product categories
|
||||
|
||||
Creating pivot table...
|
||||
|
||||
✅ Pivot Table Created!
|
||||
|
||||
📊 Sales by Region and Product Category:
|
||||
|
||||
Top Insights:
|
||||
1. West region leads with $1.45M (30.3% of total)
|
||||
2. Electronics is #1 category at $1.70M (35.6%)
|
||||
3. Northeast + Electronics = $400K (highest cell)
|
||||
4. Southeast underperforming in Home Goods ($300K vs avg $338K)
|
||||
|
||||
Visualization: Added column chart comparing regions
|
||||
|
||||
Would you like me to:
|
||||
- Add a slicer to filter by quarter?
|
||||
- Calculate % of total for each cell?
|
||||
- Create a separate view for top products?
|
||||
```
|
||||
|
||||
### Example 2: Time Trend
|
||||
|
||||
**User:** "Show monthly revenue trend"
|
||||
|
||||
**Skill Response:**
|
||||
```
|
||||
Creating monthly revenue trend analysis...
|
||||
|
||||
I see data spanning 10 months (Jan-Oct 2025).
|
||||
|
||||
✅ Trend Analysis Complete!
|
||||
|
||||
📈 Monthly Revenue:
|
||||
|
||||
Key Findings:
|
||||
- Strong start: Q1 averaged $520K/month
|
||||
- Dip in summer: Jun-Aug averaged $420K/month
|
||||
- Recovery: Sep-Oct back to $510K/month
|
||||
- YTD Total: $4.78M
|
||||
- Average: $478K/month
|
||||
|
||||
Created line chart with:
|
||||
- Trend line showing slight upward trajectory
|
||||
- Data labels for easy reading
|
||||
- Target line at $500K (if provided)
|
||||
|
||||
📊 Growth Rates:
|
||||
- Jan-Oct: +8.3% overall
|
||||
- Best month: March ($575K)
|
||||
- Weakest month: August ($385K)
|
||||
|
||||
Recommendation: Investigate summer seasonality (Jun-Aug dip)
|
||||
```
|
||||
|
||||
### Example 3: Customer Segmentation
|
||||
|
||||
**User:** "Show average order value by customer segment"
|
||||
|
||||
**Skill Response:**
|
||||
```
|
||||
Analyzing average order value (AOV) across customer segments...
|
||||
|
||||
✅ Customer Segmentation Analysis Complete!
|
||||
|
||||
| Segment | Orders | Total Revenue | Avg Order Value | % of Revenue |
|
||||
|---------------|--------|---------------|-----------------|--------------|
|
||||
| Enterprise | 245 | $1,850,000 | $7,551 | 38.7% |
|
||||
| Mid-Market | 892 | $1,920,000 | $2,152 | 40.2% |
|
||||
| Small Business| 2,456 | $835,000 | $340 | 17.5% |
|
||||
| Consumer | 1,641 | $175,000 | $107 | 3.7% |
|
||||
| Total | 5,234 | $4,780,000 | $913 | 100.0% |
|
||||
|
||||
🎯 Key Insights:
|
||||
- Enterprise: Highest AOV ($7.5K) but only 4.7% of orders
|
||||
- Mid-Market: Sweet spot (40% of revenue, $2.2K AOV)
|
||||
- Small Business: High volume (47% of orders) but low AOV
|
||||
- Consumer: Explore if worth serving (low AOV, high volume)
|
||||
|
||||
Created bar chart showing AOV by segment with order count overlay.
|
||||
|
||||
💡 Strategic Questions:
|
||||
1. Should we focus more resources on Enterprise (high AOV)?
|
||||
2. Can we up-sell Small Business to Mid-Market?
|
||||
3. Is Consumer segment profitable at $107 AOV?
|
||||
```
|
||||
|
||||
### Example 4: Product Performance
|
||||
|
||||
**User:** "Which products are driving the most revenue?"
|
||||
|
||||
**Skill Response:**
|
||||
```
|
||||
Creating product revenue ranking...
|
||||
|
||||
✅ Top Products Analysis Complete!
|
||||
|
||||
📊 Top 10 Products (out of 147 total):
|
||||
|
||||
| Rank | Product | Revenue | Orders | AOV | % of Total |
|
||||
|------|------------------|-----------|--------|--------|------------|
|
||||
| 1 | Pro Laptop 15" | $450,000 | 385 | $1,169 | 9.4% |
|
||||
| 2 | Business Suite | $380,000 | 892 | $426 | 7.9% |
|
||||
| 3 | Smart Display | $350,000 | 1,245 | $281 | 7.3% |
|
||||
| 4 | Wireless Buds | $310,000 | 2,156 | $144 | 6.5% |
|
||||
| 5 | Office Chair Pro | $295,000 | 428 | $689 | 6.2% |
|
||||
| 6 | Standing Desk | $280,000 | 356 | $787 | 5.9% |
|
||||
| 7 | Monitor 27" | $265,000 | 487 | $544 | 5.5% |
|
||||
| 8 | Keyboard Mech | $245,000 | 1,823 | $134 | 5.1% |
|
||||
| 9 | Webcam 4K | $220,000 | 678 | $324 | 4.6% |
|
||||
| 10 | Mouse Wireless | $195,000 | 2,145 | $91 | 4.1% |
|
||||
| | **Top 10 Total** | **$2,990,000** | | | **62.5%** |
|
||||
| | All Others (137) | $1,790,000 | | | 37.5% |
|
||||
| | **Grand Total** | **$4,780,000** | | | **100.0%** |
|
||||
|
||||
🎯 Insights:
|
||||
- Top 10 products = 62.5% of revenue (strong concentration)
|
||||
- Pro Laptop alone = 9.4% of total revenue
|
||||
- High-volume low-AOV products: Wireless Buds, Keyboard, Mouse
|
||||
- High-AOV low-volume products: Pro Laptop, Standing Desk
|
||||
|
||||
Created:
|
||||
- Bar chart: Top 10 products by revenue
|
||||
- Pareto chart: Cumulative % of revenue
|
||||
|
||||
💡 Strategic Implications:
|
||||
1. Focus inventory on Top 20 products (likely 80% of revenue)
|
||||
2. Bundle high-volume + high-margin items
|
||||
3. Wireless Buds: Explore upsell to Pro Buds (higher margin?)
|
||||
```
|
||||
|
||||
## Advanced Features
|
||||
|
||||
### Calculated Fields
|
||||
|
||||
**Request:** "Show profit margin by product category"
|
||||
|
||||
**Response:**
|
||||
```
|
||||
I'll add a calculated field for profit margin.
|
||||
|
||||
Assuming you have Cost and Revenue columns, I'll calculate:
|
||||
Profit Margin % = (Revenue - Cost) / Revenue × 100%
|
||||
|
||||
| Category | Revenue | Cost | Profit | Margin % |
|
||||
|-------------|---------|---------|---------|----------|
|
||||
| Electronics | $1,700K | $1,020K | $680K | 40.0% |
|
||||
| Clothing | $1,730K | $1,125K | $605K | 35.0% |
|
||||
| Home Goods | $1,350K | $945K | $405K | 30.0% |
|
||||
| Total | $4,780K | $3,090K | $1,690K | 35.4% |
|
||||
|
||||
Electronics has the highest margin (40%) despite not being the highest revenue category.
|
||||
```
|
||||
|
||||
### Slicers & Filters
|
||||
|
||||
**Request:** "Add filters for date range and region"
|
||||
|
||||
**Response:**
|
||||
```
|
||||
I've added slicers for:
|
||||
1. Date Range (select quarters or specific months)
|
||||
2. Region (select one or multiple regions)
|
||||
3. Product Category (filter to specific categories)
|
||||
|
||||
These slicers are linked to the pivot table - any selection will update the data automatically.
|
||||
|
||||
Try clicking Q3 in the date slicer to see summer performance!
|
||||
```
|
||||
|
||||
### Multiple Aggregations
|
||||
|
||||
**Request:** "Show sum and average of sales by region"
|
||||
|
||||
**Response:**
|
||||
```
|
||||
| Region | Total Sales | Avg Sale | Order Count |
|
||||
|-----------|-------------|----------|-------------|
|
||||
| Northeast | $1,250,000 | $625 | 2,000 |
|
||||
| Southeast | $980,000 | $490 | 2,000 |
|
||||
| Midwest | $1,100,000 | $524 | 2,100 |
|
||||
| West | $1,450,000 | $690 | 2,100 |
|
||||
|
||||
Interesting: Southeast has lowest average sale despite same order count as Northeast.
|
||||
This suggests smaller basket sizes in Southeast - worth investigating!
|
||||
```
|
||||
|
||||
## Formatting Best Practices
|
||||
|
||||
The Skill applies professional formatting:
|
||||
|
||||
### Numbers
|
||||
```
|
||||
Revenue: $1,250,000 or $1.25M (use M for millions)
|
||||
Counts: 2,000 (thousands separator)
|
||||
Percentages: 35.0% (1 decimal)
|
||||
```
|
||||
|
||||
### Conditional Formatting
|
||||
```
|
||||
Top performers: Green highlight
|
||||
Bottom performers: Red highlight
|
||||
Heatmap: Color gradient from red (low) to green (high)
|
||||
```
|
||||
|
||||
### Layout
|
||||
```
|
||||
- Bold headers
|
||||
- Freeze top row and left column
|
||||
- Subtotals and grand totals
|
||||
- Alternating row colors for readability
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
See resources folder for:
|
||||
- `REFERENCE.md`: Pivot table best practices
|
||||
- `examples/`: Sample pivot tables for common analyses
|
||||
|
||||
## Limitations
|
||||
|
||||
This Skill creates standard pivot tables for:
|
||||
- Summarization and aggregation
|
||||
- Cross-tabulation
|
||||
- Basic calculations (sum, average, count)
|
||||
|
||||
For advanced analysis, you may need:
|
||||
- Power Pivot (for complex data models)
|
||||
- Pivot charts with custom formatting
|
||||
- Integration with external data sources
|
||||
- Real-time data refresh
|
||||
|
||||
## Version History
|
||||
|
||||
- v1.0.0 (2025-10-27): Initial release with core pivot table generation
|
||||
26
skills/excel-pivot-wizard/assets/README.md
Normal file
26
skills/excel-pivot-wizard/assets/README.md
Normal file
@@ -0,0 +1,26 @@
|
||||
# Skill Assets
|
||||
|
||||
This directory contains static assets used by this skill.
|
||||
|
||||
## Purpose
|
||||
|
||||
Assets can include:
|
||||
- Configuration files (JSON, YAML)
|
||||
- Data files
|
||||
- Templates
|
||||
- Schemas
|
||||
- Test fixtures
|
||||
|
||||
## Guidelines
|
||||
|
||||
- Keep assets small and focused
|
||||
- Document asset purpose and format
|
||||
- Use standard file formats
|
||||
- Include schema validation where applicable
|
||||
|
||||
## Common Asset Types
|
||||
|
||||
- **config.json** - Configuration templates
|
||||
- **schema.json** - JSON schemas
|
||||
- **template.yaml** - YAML templates
|
||||
- **test-data.json** - Test fixtures
|
||||
26
skills/excel-pivot-wizard/references/README.md
Normal file
26
skills/excel-pivot-wizard/references/README.md
Normal file
@@ -0,0 +1,26 @@
|
||||
# Skill References
|
||||
|
||||
This directory contains reference materials that enhance this skill's capabilities.
|
||||
|
||||
## Purpose
|
||||
|
||||
References can include:
|
||||
- Code examples
|
||||
- Style guides
|
||||
- Best practices documentation
|
||||
- Template files
|
||||
- Configuration examples
|
||||
|
||||
## Guidelines
|
||||
|
||||
- Keep references concise and actionable
|
||||
- Use markdown for documentation
|
||||
- Include clear examples
|
||||
- Link to external resources when appropriate
|
||||
|
||||
## Types of References
|
||||
|
||||
- **examples.md** - Usage examples
|
||||
- **style-guide.md** - Coding standards
|
||||
- **templates/** - Reusable templates
|
||||
- **patterns.md** - Design patterns
|
||||
24
skills/excel-pivot-wizard/scripts/README.md
Normal file
24
skills/excel-pivot-wizard/scripts/README.md
Normal file
@@ -0,0 +1,24 @@
|
||||
# Skill Scripts
|
||||
|
||||
This directory contains optional helper scripts that support this skill's functionality.
|
||||
|
||||
## Purpose
|
||||
|
||||
Scripts here can be:
|
||||
- Referenced by the skill for automation
|
||||
- Used as examples for users
|
||||
- Executed during skill activation
|
||||
|
||||
## Guidelines
|
||||
|
||||
- All scripts should be well-documented
|
||||
- Include usage examples in comments
|
||||
- Make scripts executable (`chmod +x`)
|
||||
- Use `#!/bin/bash` or `#!/usr/bin/env python3` shebangs
|
||||
|
||||
## Adding Scripts
|
||||
|
||||
1. Create script file (e.g., `analyze.sh`, `process.py`)
|
||||
2. Add documentation header
|
||||
3. Make executable: `chmod +x script-name.sh`
|
||||
4. Test thoroughly before committing
|
||||
Reference in New Issue
Block a user