Initial commit
This commit is contained in:
7
skills/skill-adapter/assets/README.md
Normal file
7
skills/skill-adapter/assets/README.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Assets
|
||||
|
||||
Bundled resources for api-monitoring-dashboard skill
|
||||
|
||||
- [ ] dashboard_template.json: JSON template for creating a basic API monitoring dashboard.
|
||||
- [ ] example_dashboard_config.yaml: Example configuration file for defining API endpoints, metrics, and alerting rules.
|
||||
- [ ] visualization_examples.md: Examples of different visualizations (e.g., line charts, bar graphs) for displaying API metrics.
|
||||
32
skills/skill-adapter/assets/config-template.json
Normal file
32
skills/skill-adapter/assets/config-template.json
Normal file
@@ -0,0 +1,32 @@
|
||||
{
|
||||
"skill": {
|
||||
"name": "skill-name",
|
||||
"version": "1.0.0",
|
||||
"enabled": true,
|
||||
"settings": {
|
||||
"verbose": false,
|
||||
"autoActivate": true,
|
||||
"toolRestrictions": true
|
||||
}
|
||||
},
|
||||
"triggers": {
|
||||
"keywords": [
|
||||
"example-trigger-1",
|
||||
"example-trigger-2"
|
||||
],
|
||||
"patterns": []
|
||||
},
|
||||
"tools": {
|
||||
"allowed": [
|
||||
"Read",
|
||||
"Grep",
|
||||
"Bash"
|
||||
],
|
||||
"restricted": []
|
||||
},
|
||||
"metadata": {
|
||||
"author": "Plugin Author",
|
||||
"category": "general",
|
||||
"tags": []
|
||||
}
|
||||
}
|
||||
90
skills/skill-adapter/assets/dashboard_template.json
Normal file
90
skills/skill-adapter/assets/dashboard_template.json
Normal file
@@ -0,0 +1,90 @@
|
||||
{
|
||||
"_comment": "Template for creating an API monitoring dashboard. This JSON defines the basic structure and sample data for visualizing API health, metrics, and alerts.",
|
||||
"dashboard_name": "API Performance Dashboard",
|
||||
"description": "A comprehensive dashboard for monitoring the health and performance of your APIs.",
|
||||
"data_source": "Prometheus",
|
||||
"refresh_interval": "5m",
|
||||
"panels": [
|
||||
{
|
||||
"panel_id": 1,
|
||||
"title": "API Request Rate",
|
||||
"type": "timeseries",
|
||||
"_comment": "Visualizes the number of API requests over time.",
|
||||
"query": "rate(http_requests_total[5m])",
|
||||
"legend": "{{method}} {{path}}",
|
||||
"unit": "req/s",
|
||||
"axis_format": "short"
|
||||
},
|
||||
{
|
||||
"panel_id": 2,
|
||||
"title": "API Error Rate (5xx)",
|
||||
"type": "timeseries",
|
||||
"_comment": "Displays the error rate of API requests resulting in 5xx errors.",
|
||||
"query": "rate(http_requests_total{status=~'5.*'}[5m])",
|
||||
"legend": "{{method}} {{path}}",
|
||||
"unit": "%",
|
||||
"axis_format": "percent",
|
||||
"transform": "multiply_by_100"
|
||||
},
|
||||
{
|
||||
"panel_id": 3,
|
||||
"title": "Average API Response Time",
|
||||
"type": "timeseries",
|
||||
"_comment": "Tracks the average response time of API requests.",
|
||||
"query": "avg(http_request_duration_seconds_sum) / avg(http_request_duration_seconds_count)",
|
||||
"legend": "{{method}} {{path}}",
|
||||
"unit": "ms",
|
||||
"axis_format": "short",
|
||||
"transform": "multiply_by_1000"
|
||||
},
|
||||
{
|
||||
"panel_id": 4,
|
||||
"title": "API Latency (P95)",
|
||||
"type": "timeseries",
|
||||
"_comment": "Shows the 95th percentile latency of API requests.",
|
||||
"query": "histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le))",
|
||||
"legend": "{{method}} {{path}}",
|
||||
"unit": "ms",
|
||||
"axis_format": "short",
|
||||
"transform": "multiply_by_1000"
|
||||
},
|
||||
{
|
||||
"panel_id": 5,
|
||||
"title": "API Status Codes",
|
||||
"type": "stat",
|
||||
"_comment": "Displays the distribution of API status codes.",
|
||||
"query": "sum(http_requests_total) by (status)",
|
||||
"unit": "total",
|
||||
"color_thresholds": [
|
||||
{ "value": 0, "color": "green" },
|
||||
{ "value": 1000, "color": "yellow" },
|
||||
{ "value": 5000, "color": "red" }
|
||||
]
|
||||
},
|
||||
{
|
||||
"panel_id": 6,
|
||||
"title": "Alerts",
|
||||
"type": "table",
|
||||
"_comment": "Displays active alerts related to API performance.",
|
||||
"query": "ALERTS{}",
|
||||
"columns": ["alertname", "severity", "description", "value"]
|
||||
}
|
||||
],
|
||||
"variables": [
|
||||
{
|
||||
"name": "namespace",
|
||||
"label": "Namespace",
|
||||
"query": "label_values(namespace)",
|
||||
"multi": true,
|
||||
"includeAll": true
|
||||
},
|
||||
{
|
||||
"name": "service",
|
||||
"label": "Service",
|
||||
"query": "label_values(service, namespace='$namespace')",
|
||||
"multi": true,
|
||||
"includeAll": true
|
||||
}
|
||||
],
|
||||
"tags": ["api", "monitoring", "performance", "health"]
|
||||
}
|
||||
113
skills/skill-adapter/assets/example_dashboard_config.yaml
Normal file
113
skills/skill-adapter/assets/example_dashboard_config.yaml
Normal file
@@ -0,0 +1,113 @@
|
||||
# Configuration file for API Monitoring Dashboard Plugin
|
||||
|
||||
# API Endpoints to Monitor
|
||||
api_endpoints:
|
||||
# Each entry defines an API endpoint to be monitored.
|
||||
- name: "User Service API" # Descriptive name for the API
|
||||
url: "https://api.example.com/users" # The actual API endpoint URL
|
||||
method: "GET" # HTTP method (GET, POST, PUT, DELETE, etc.)
|
||||
expected_status_code: 200 # Expected HTTP status code for a successful response
|
||||
timeout: 5 # Timeout in seconds for the API request
|
||||
headers: # Optional headers to include in the API request
|
||||
Content-Type: "application/json"
|
||||
Authorization: "Bearer REPLACE_ME"
|
||||
- name: "Product Service API"
|
||||
url: "https://api.example.com/products"
|
||||
method: "GET"
|
||||
expected_status_code: 200
|
||||
timeout: 5
|
||||
- name: "Order Service API (POST)"
|
||||
url: "https://api.example.com/orders"
|
||||
method: "POST"
|
||||
expected_status_code: 201
|
||||
timeout: 10
|
||||
data: # Example data for POST requests (can be a placeholder)
|
||||
item_id: 123
|
||||
quantity: 2
|
||||
- name: "Authentication API"
|
||||
url: "https://auth.example.com/login"
|
||||
method: "POST"
|
||||
expected_status_code: 200
|
||||
timeout: 5
|
||||
data:
|
||||
username: "YOUR_USERNAME"
|
||||
password: "YOUR_PASSWORD"
|
||||
|
||||
# Metrics to Collect and Display
|
||||
metrics:
|
||||
# Each entry defines a metric to be collected from the API response.
|
||||
- name: "Response Time (ms)" # Descriptive name for the metric
|
||||
endpoint: "User Service API" # The API endpoint to collect the metric from (must match an entry in api_endpoints)
|
||||
json_path: "response_time" # JSON path to extract the metric value from the response (if applicable)
|
||||
unit: "ms" # Unit of measurement for the metric
|
||||
type: "number" # Data type of the metric (number, string, boolean)
|
||||
- name: "Data Size (KB)"
|
||||
endpoint: "Product Service API"
|
||||
json_path: "data_size"
|
||||
unit: "KB"
|
||||
type: "number"
|
||||
- name: "Error Count"
|
||||
endpoint: "Order Service API (POST)"
|
||||
json_path: "error_count"
|
||||
unit: "count"
|
||||
type: "number"
|
||||
- name: "Login Success Rate"
|
||||
endpoint: "Authentication API"
|
||||
json_path: "success_rate"
|
||||
unit: "%"
|
||||
type: "number"
|
||||
|
||||
# Alerting Rules
|
||||
alerts:
|
||||
# Each entry defines an alerting rule.
|
||||
- name: "High Response Time" # Descriptive name for the alert
|
||||
metric: "Response Time (ms)" # The metric to monitor (must match an entry in metrics)
|
||||
threshold: 200 # Threshold value for the alert
|
||||
operator: ">" # Operator to compare the metric value with the threshold (>, <, >=, <=, ==, !=)
|
||||
severity: "critical" # Severity of the alert (critical, warning, info)
|
||||
notification_channels: # List of notification channels to send the alert to
|
||||
- "email"
|
||||
- "slack"
|
||||
- name: "Low Data Size"
|
||||
metric: "Data Size (KB)"
|
||||
threshold: 10
|
||||
operator: "<"
|
||||
severity: "warning"
|
||||
notification_channels:
|
||||
- "email"
|
||||
- name: "High Error Count"
|
||||
metric: "Error Count"
|
||||
threshold: 5
|
||||
operator: ">="
|
||||
severity: "critical"
|
||||
notification_channels:
|
||||
- "slack"
|
||||
- name: "Low Login Success Rate"
|
||||
metric: "Login Success Rate"
|
||||
threshold: 90
|
||||
operator: "<"
|
||||
severity: "warning"
|
||||
notification_channels:
|
||||
- "email"
|
||||
|
||||
# Notification Channel Configurations (REPLACE_ME)
|
||||
notification_channels_config:
|
||||
email:
|
||||
smtp_server: "smtp.example.com"
|
||||
smtp_port: 587
|
||||
sender_email: "monitoring@example.com"
|
||||
recipient_email: "alerts@example.com"
|
||||
smtp_username: "YOUR_SMTP_USERNAME"
|
||||
smtp_password: "YOUR_SMTP_PASSWORD"
|
||||
slack:
|
||||
slack_webhook_url: "YOUR_SLACK_WEBHOOK_URL"
|
||||
|
||||
# Dashboard Configuration
|
||||
dashboard:
|
||||
title: "API Monitoring Dashboard"
|
||||
refresh_interval: 60 # Refresh interval in seconds
|
||||
layout: # Define the layout of the dashboard (example only)
|
||||
- "User Service API": ["Response Time (ms)"]
|
||||
- "Product Service API": ["Data Size (KB)"]
|
||||
- "Order Service API (POST)": ["Error Count"]
|
||||
- "Authentication API": ["Login Success Rate"]
|
||||
28
skills/skill-adapter/assets/skill-schema.json
Normal file
28
skills/skill-adapter/assets/skill-schema.json
Normal file
@@ -0,0 +1,28 @@
|
||||
{
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"title": "Claude Skill Configuration",
|
||||
"type": "object",
|
||||
"required": ["name", "description"],
|
||||
"properties": {
|
||||
"name": {
|
||||
"type": "string",
|
||||
"pattern": "^[a-z0-9-]+$",
|
||||
"maxLength": 64,
|
||||
"description": "Skill identifier (lowercase, hyphens only)"
|
||||
},
|
||||
"description": {
|
||||
"type": "string",
|
||||
"maxLength": 1024,
|
||||
"description": "What the skill does and when to use it"
|
||||
},
|
||||
"allowed-tools": {
|
||||
"type": "string",
|
||||
"description": "Comma-separated list of allowed tools"
|
||||
},
|
||||
"version": {
|
||||
"type": "string",
|
||||
"pattern": "^\\d+\\.\\d+\\.\\d+$",
|
||||
"description": "Semantic version (x.y.z)"
|
||||
}
|
||||
}
|
||||
}
|
||||
27
skills/skill-adapter/assets/test-data.json
Normal file
27
skills/skill-adapter/assets/test-data.json
Normal file
@@ -0,0 +1,27 @@
|
||||
{
|
||||
"testCases": [
|
||||
{
|
||||
"name": "Basic activation test",
|
||||
"input": "trigger phrase example",
|
||||
"expected": {
|
||||
"activated": true,
|
||||
"toolsUsed": ["Read", "Grep"],
|
||||
"success": true
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Complex workflow test",
|
||||
"input": "multi-step trigger example",
|
||||
"expected": {
|
||||
"activated": true,
|
||||
"steps": 3,
|
||||
"toolsUsed": ["Read", "Write", "Bash"],
|
||||
"success": true
|
||||
}
|
||||
}
|
||||
],
|
||||
"fixtures": {
|
||||
"sampleInput": "example data",
|
||||
"expectedOutput": "processed result"
|
||||
}
|
||||
}
|
||||
122
skills/skill-adapter/assets/visualization_examples.md
Normal file
122
skills/skill-adapter/assets/visualization_examples.md
Normal file
@@ -0,0 +1,122 @@
|
||||
# API Monitoring Dashboard: Visualization Examples
|
||||
|
||||
This document provides examples of different visualizations you can use in your API monitoring dashboards, created with the `api-monitoring-dashboard` plugin. Use these examples as inspiration and adapt them to your specific API and monitoring needs.
|
||||
|
||||
## 1. Line Charts: Time-Series Data
|
||||
|
||||
Line charts are excellent for visualizing trends over time. They are particularly useful for showing API response times, request rates, and error rates.
|
||||
|
||||
**Example:** API Response Time over the Past 24 Hours
|
||||
|
||||
* **Metric:** Average API Response Time (milliseconds)
|
||||
* **Time Range:** Past 24 hours
|
||||
* **Granularity:** 1 hour
|
||||
* **Visualization:** Line Chart
|
||||
* **Data Source:** [Placeholder: Your API Monitoring Data Source (e.g., Prometheus, Datadog, New Relic)]
|
||||
|
||||
**Instructions:**
|
||||
|
||||
1. Configure your data source to collect API response time data.
|
||||
2. Specify the time range and granularity for the chart. Shorter granularities (e.g., 5 minutes) are useful for identifying short-term spikes, while longer granularities (e.g., 1 hour) are better for identifying long-term trends.
|
||||
3. Ensure your data source returns data in a format compatible with the charting library used by the `api-monitoring-dashboard` plugin.
|
||||
|
||||
**Placeholder for Chart Image (Optional):**
|
||||
|
||||
[Insert Image of API Response Time Line Chart Here]
|
||||
|
||||
## 2. Bar Graphs: Categorical Data
|
||||
|
||||
Bar graphs are useful for comparing different categories of data, such as API endpoints, HTTP status codes, or geographic regions.
|
||||
|
||||
**Example:** API Request Count by Endpoint
|
||||
|
||||
* **Metric:** Number of API Requests
|
||||
* **Category:** API Endpoint (e.g., `/users`, `/products`, `/orders`)
|
||||
* **Time Range:** Past 7 days
|
||||
* **Visualization:** Bar Graph
|
||||
* **Data Source:** [Placeholder: Your API Monitoring Data Source]
|
||||
|
||||
**Instructions:**
|
||||
|
||||
1. Configure your data source to track API requests by endpoint.
|
||||
2. Specify the time range for the chart.
|
||||
3. Consider using different colors to represent different API endpoints.
|
||||
|
||||
**Placeholder for Chart Image (Optional):**
|
||||
|
||||
[Insert Image of API Request Count Bar Graph Here]
|
||||
|
||||
## 3. Gauge Charts: Single Value Performance
|
||||
|
||||
Gauge charts are effective for displaying a single, critical performance metric and its current status relative to a threshold.
|
||||
|
||||
**Example:** CPU Utilization of API Server
|
||||
|
||||
* **Metric:** CPU Utilization (%)
|
||||
* **Threshold:** 80% (Warning), 95% (Critical)
|
||||
* **Visualization:** Gauge Chart
|
||||
* **Data Source:** [Placeholder: Your Server Monitoring Data Source]
|
||||
|
||||
**Instructions:**
|
||||
|
||||
1. Configure your server monitoring data source to collect CPU utilization data.
|
||||
2. Define appropriate thresholds for warning and critical levels. These thresholds should be based on your API's performance requirements and resource constraints.
|
||||
3. The gauge chart should visually indicate when the metric exceeds the warning or critical thresholds.
|
||||
|
||||
**Placeholder for Chart Image (Optional):**
|
||||
|
||||
[Insert Image of CPU Utilization Gauge Chart Here]
|
||||
|
||||
## 4. Heatmaps: Correlation and Density
|
||||
|
||||
Heatmaps are useful for visualizing correlations between different metrics or the density of events over time.
|
||||
|
||||
**Example:** Latency Distribution by API Endpoint and Time of Day
|
||||
|
||||
* **Metric:** API Latency (milliseconds)
|
||||
* **X-Axis:** API Endpoint
|
||||
* **Y-Axis:** Time of Day
|
||||
* **Visualization:** Heatmap
|
||||
* **Data Source:** [Placeholder: Your API Monitoring Data Source]
|
||||
|
||||
**Instructions:**
|
||||
|
||||
1. Configure your data source to track API latency by endpoint and time of day.
|
||||
2. Choose a color palette that effectively represents the range of latency values.
|
||||
3. Consider using a logarithmic scale for the latency values to better visualize variations in the data.
|
||||
|
||||
**Placeholder for Chart Image (Optional):**
|
||||
|
||||
[Insert Image of Latency Distribution Heatmap Here]
|
||||
|
||||
## 5. Tables: Detailed Data
|
||||
|
||||
Tables are useful for displaying detailed data and allowing users to sort and filter the data.
|
||||
|
||||
**Example:** Recent API Errors
|
||||
|
||||
* **Columns:** Timestamp, API Endpoint, HTTP Status Code, Error Message, Client IP Address
|
||||
* **Data Source:** [Placeholder: Your API Error Logs]
|
||||
* **Visualization:** Table
|
||||
|
||||
**Instructions:**
|
||||
|
||||
1. Configure your data source to collect detailed API error logs.
|
||||
2. Include relevant columns in the table, such as timestamp, API endpoint, HTTP status code, error message, and client IP address.
|
||||
3. Allow users to sort and filter the data by different columns.
|
||||
|
||||
**Placeholder for Table Data (Example):**
|
||||
|
||||
| Timestamp | API Endpoint | HTTP Status Code | Error Message | Client IP Address |
|
||||
|---|---|---|---|---|
|
||||
| 2023-10-27 10:00:00 | /users | 500 | Internal Server Error | 192.168.1.100 |
|
||||
| 2023-10-27 10:01:00 | /products | 404 | Not Found | 192.168.1.101 |
|
||||
| 2023-10-27 10:02:00 | /orders | 503 | Service Unavailable | 192.168.1.102 |
|
||||
|
||||
## Important Considerations
|
||||
|
||||
* **Data Source Integration:** Ensure the `api-monitoring-dashboard` plugin can seamlessly integrate with your existing monitoring data sources. Provide clear instructions on how to configure these integrations.
|
||||
* **Customization:** Allow users to customize the appearance and behavior of the visualizations, such as color palettes, axis labels, and threshold values.
|
||||
* **Alerting:** Integrate alerts with the visualizations to notify users when critical performance metrics exceed predefined thresholds.
|
||||
* **Accessibility:** Ensure the visualizations are accessible to users with disabilities, following WCAG guidelines.
|
||||
* **Performance:** Optimize the visualizations for performance, especially when dealing with large datasets.
|
||||
Reference in New Issue
Block a user