{ "_comment": "Configuration template for the time-series-forecaster plugin.", "model_name": "Prophet", "_comment": "Name of the forecasting model to use. Options: Prophet, ARIMA, ExponentialSmoothing. Default: Prophet", "model_parameters": { "_comment": "Parameters specific to the chosen model.", "Prophet": { "_comment": "Parameters for the Prophet model (https://facebook.github.io/prophet/docs/parameters.html). Leave empty to use defaults.", "growth": "linear", "_comment": "Type of growth: 'linear' or 'logistic'.", "changepoints": null, "_comment": "List of dates at which to include potential changepoints. If None, potential changepoints are automatically placed.", "n_changepoints": 25, "_comment": "Number of potential changepoints to place automatically.", "changepoint_range": 0.8, "_comment": "Proportion of history in which trend changepoints will be estimated.", "yearly_seasonality": "auto", "_comment": "Fit yearly seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate.", "weekly_seasonality": "auto", "_comment": "Fit weekly seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate.", "daily_seasonality": "auto", "_comment": "Fit daily seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate.", "holidays": null, "_comment": "Pandas DataFrame of holidays with columns 'ds' (date) and 'holiday' (holiday name).", "seasonality_mode": "additive", "_comment": "Type of seasonality: 'additive' or 'multiplicative'.", "seasonality_prior_scale": 10.0, "_comment": "Parameter modulating the strength of the seasonality model.", "holidays_prior_scale": 10.0, "_comment": "Parameter modulating the strength of the holiday model.", "changepoint_prior_scale": 0.05, "_comment": "Parameter modulating the flexibility of the automatic changepoint selection.", "mcmc_samples": 0, "_comment": "Number of MCMC samples to draw. If 0, will do point estimates.", "interval_width": 0.8, "_comment": "Width of the uncertainty intervals provided for the forecast.", "uncertainty_samples": 1000, "_comment": "Number of simulated draws used to estimate uncertainty intervals.", "stan_backend": null "_comment": "The Stan backend to use. Valid options are: null (default), 'CMDSTANPB', and 'PYSTAN'.", }, "ARIMA": { "_comment": "Parameters for the ARIMA model (https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima.model.ARIMA.html).", "p": 5, "_comment": "The number of lag observations included in the model, also called the order of the AR part.", "d": 1, "_comment": "The number of times that the raw observations are differenced, also called the degree of differencing.", "q": 0, "_comment": "The size of the moving average window, also called the order of the MA part.", "seasonal_order": [ 0, 0, 0, 0 ], "_comment": "The (P,D,Q,s) order of the seasonal component of the model for seasonality of period s (often 4 or 12). Can be set to None if there is no seasonal component.", "trend": null, "_comment": "Parameter controlling the deterministic trend. Can be a string ('n', 'c', 't', 'ct') or a list of regressor names. 'n' - no trend, 'c' - constant only, 't' - time trend only, 'ct' - constant and time trend." }, "ExponentialSmoothing": { "_comment": "Parameters for the Exponential Smoothing model (https://www.statsmodels.org/stable/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html).", "seasonal_periods": 12, "_comment": "The number of periods in a complete seasonal cycle.", "trend": "add", "_comment": "Type of trend component. Options: 'add', 'mul', None.", "seasonal": "add", "_comment": "Type of seasonal component. Options: 'add', 'mul', None.", "damped_trend": false, "_comment": "Should the trend component be damped?", "initialization_method": "estimated", "_comment": "Method for initializing the recursions. Options: 'estimated', 'heuristic', 'known'.", "use_boxcox": false, "_comment": "Should the Box-Cox transform be applied to the data?" } }, "data_frequency": "D", "_comment": "Frequency of the time series data. Options: 'D' (daily), 'W' (weekly), 'M' (monthly), 'Q' (quarterly), 'Y' (yearly), etc.", "forecast_horizon": 30, "_comment": "Number of periods to forecast into the future.", "confidence_interval": 0.95, "_comment": "Confidence level for the forecast intervals.", "error_metric": "rmse", "_comment": "Metric to use for evaluating model performance. Options: 'rmse', 'mae', 'mse'.", "cross_validation": { "enabled": true, "_comment": "Enable or disable cross-validation.", "initial": "365 days", "_comment": "Amount of time to train the model initially. Example: '365 days', '6 months'.", "period": "90 days", "_comment": "Spacing between cutoff dates. Example: '90 days', '3 months'.", "horizon": "30 days", "_comment": "Size of the forecast horizon. Example: '30 days', '1 month'." }, "feature_engineering": { "add_lags": false, "_comment": "Add lagged values of the time series as features.", "num_lags": 7, "_comment": "Number of lags to add if add_lags is true.", "add_seasonal_dummies": false, "_comment": "Add seasonal dummy variables.", "add_time_trend": false "_comment": "Add a time trend feature." }, "anomaly_detection": { "enabled": false, "_comment": "Enable or disable anomaly detection.", "threshold": 0.95 "_comment": "Threshold for anomaly detection." }, "output_format": "json", "_comment": "Format of the forecast output. Options: 'json', 'csv'.", "dataset_name": "example_sales_data", "_comment": "Name of the dataset for identification purposes." }