Initial commit
This commit is contained in:
8
skills/recommendation-engine/assets/README.md
Normal file
8
skills/recommendation-engine/assets/README.md
Normal file
@@ -0,0 +1,8 @@
|
||||
# Assets
|
||||
|
||||
Bundled resources for recommendation-engine skill
|
||||
|
||||
- [ ] example_user_data.csv: Example user data for testing the recommendation engine.
|
||||
- [ ] example_item_data.csv: Example item data for testing the recommendation engine.
|
||||
- [ ] recommender_template.py: Template for creating a new recommendation engine.
|
||||
- [ ] configuration_template.yaml: Template for configuring the recommendation engine.
|
||||
@@ -0,0 +1,68 @@
|
||||
# Configuration template for the recommendation engine plugin.
|
||||
|
||||
# Data source configuration
|
||||
data_source:
|
||||
type: "csv" # Type of data source: csv, database, api, etc.
|
||||
path: "data/user_item_interactions.csv" # Path to the data file or API endpoint
|
||||
# Database connection details (if applicable)
|
||||
database:
|
||||
host: "localhost" # REPLACE_ME: Database host
|
||||
port: 5432 # Database port
|
||||
name: "recommendations_db" # REPLACE_ME: Database name
|
||||
user: "recommendations_user" # REPLACE_ME: Database user
|
||||
password: "YOUR_DATABASE_PASSWORD" # REPLACE_ME: Database password
|
||||
|
||||
# Feature engineering configuration
|
||||
feature_engineering:
|
||||
user_features:
|
||||
- "age" # List of user features to use
|
||||
- "location"
|
||||
- "interests"
|
||||
item_features:
|
||||
- "category" # List of item features to use
|
||||
- "price"
|
||||
- "description"
|
||||
interaction_features:
|
||||
- "rating" # List of interaction features to use
|
||||
- "timestamp"
|
||||
feature_scaling: "standard" # Feature scaling method: standard, minmax, none
|
||||
|
||||
# Model configuration
|
||||
model:
|
||||
type: "collaborative_filtering" # Type of recommendation model: collaborative_filtering, content_based, hybrid
|
||||
algorithm: "als" # Algorithm to use for the model: als, sgd, knn, etc.
|
||||
hyperparameters:
|
||||
n_factors: 50 # Number of latent factors in collaborative filtering
|
||||
reg_param: 0.01 # Regularization parameter
|
||||
epochs: 10 # Number of training epochs
|
||||
cold_start_strategy: "popularity" # Strategy for handling cold start problems: popularity, average, etc.
|
||||
|
||||
# Evaluation configuration
|
||||
evaluation:
|
||||
metrics:
|
||||
- "precision" # List of evaluation metrics to use
|
||||
- "recall"
|
||||
- "ndcg"
|
||||
split_ratio: 0.8 # Ratio of data to use for training (remaining for testing)
|
||||
k: 10 # Number of recommendations to consider for evaluation
|
||||
|
||||
# Deployment configuration
|
||||
deployment:
|
||||
model_path: "models/recommendation_model.pkl" # Path to save the trained model
|
||||
api_endpoint: "/recommendations" # API endpoint for serving recommendations
|
||||
num_recommendations: 5 # Default number of recommendations to return
|
||||
|
||||
# Logging configuration
|
||||
logging:
|
||||
level: "INFO" # Logging level: DEBUG, INFO, WARNING, ERROR, CRITICAL
|
||||
file: "logs/recommendation_engine.log" # Path to the log file
|
||||
|
||||
# Performance optimization configuration
|
||||
optimization:
|
||||
enable_caching: true # Enable caching of recommendations
|
||||
cache_expiry: 3600 # Cache expiry time in seconds (1 hour)
|
||||
|
||||
# Error handling configuration
|
||||
error_handling:
|
||||
retries: 3 # Number of retries for failed requests
|
||||
retry_delay: 60 # Delay between retries in seconds
|
||||
Reference in New Issue
Block a user