Files
gh-jeremylongshore-claude-c…/skills/model-evaluation-suite/assets/visualization_script.py
2025-11-29 18:51:40 +08:00

170 lines
5.5 KiB
Python

#!/usr/bin/env python3
"""
visualization_script.py
This script generates visualizations of model performance metrics.
It supports various plot types and data formats.
Example Usage:
To generate a scatter plot of predicted vs. actual values:
python visualization_script.py --plot_type scatter --actual_values actual.csv --predicted_values predicted.csv --output scatter_plot.png
To generate a histogram of errors:
python visualization_script.py --plot_type histogram --errors errors.csv --output error_histogram.png
"""
import argparse
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import os
def generate_scatter_plot(actual_values_path, predicted_values_path, output_path):
"""
Generates a scatter plot of actual vs. predicted values.
Args:
actual_values_path (str): Path to the CSV file containing actual values.
predicted_values_path (str): Path to the CSV file containing predicted values.
output_path (str): Path to save the generated plot.
"""
try:
actual_values = pd.read_csv(actual_values_path).values.flatten()
predicted_values = pd.read_csv(predicted_values_path).values.flatten()
plt.figure(figsize=(10, 8))
sns.scatterplot(x=actual_values, y=predicted_values)
plt.xlabel("Actual Values")
plt.ylabel("Predicted Values")
plt.title("Actual vs. Predicted Values")
plt.savefig(output_path)
plt.close()
print(f"Scatter plot saved to {output_path}")
except FileNotFoundError as e:
print(f"Error: File not found: {e}")
except Exception as e:
print(f"Error generating scatter plot: {e}")
def generate_histogram(errors_path, output_path):
"""
Generates a histogram of errors.
Args:
errors_path (str): Path to the CSV file containing errors.
output_path (str): Path to save the generated plot.
"""
try:
errors = pd.read_csv(errors_path).values.flatten()
plt.figure(figsize=(10, 8))
sns.histplot(errors, kde=True) # Add kernel density estimate
plt.xlabel("Error")
plt.ylabel("Frequency")
plt.title("Distribution of Errors")
plt.savefig(output_path)
plt.close()
print(f"Histogram saved to {output_path}")
except FileNotFoundError as e:
print(f"Error: File not found: {e}")
except Exception as e:
print(f"Error generating histogram: {e}")
def generate_residual_plot(actual_values_path, predicted_values_path, output_path):
"""
Generates a residual plot.
Args:
actual_values_path (str): Path to the CSV file containing actual values.
predicted_values_path (str): Path to the CSV file containing predicted values.
output_path (str): Path to save the generated plot.
"""
try:
actual_values = pd.read_csv(actual_values_path).values.flatten()
predicted_values = pd.read_csv(predicted_values_path).values.flatten()
residuals = actual_values - predicted_values
plt.figure(figsize=(10, 8))
sns.scatterplot(x=predicted_values, y=residuals)
plt.xlabel("Predicted Values")
plt.ylabel("Residuals")
plt.title("Residual Plot")
plt.axhline(y=0, color='r', linestyle='--') # Add a horizontal line at y=0
plt.savefig(output_path)
plt.close()
print(f"Residual plot saved to {output_path}")
except FileNotFoundError as e:
print(f"Error: File not found: {e}")
except Exception as e:
print(f"Error generating residual plot: {e}")
def main():
"""
Main function to parse arguments and generate visualizations.
"""
parser = argparse.ArgumentParser(
description="Generate visualizations of model performance metrics."
)
parser.add_argument(
"--plot_type",
type=str,
required=True,
choices=["scatter", "histogram", "residual"],
help="Type of plot to generate (scatter, histogram, residual).",
)
parser.add_argument(
"--actual_values",
type=str,
help="Path to the CSV file containing actual values (required for scatter and residual plots).",
)
parser.add_argument(
"--predicted_values",
type=str,
help="Path to the CSV file containing predicted values (required for scatter and residual plots).",
)
parser.add_argument(
"--errors",
type=str,
help="Path to the CSV file containing errors (required for histogram).",
)
parser.add_argument(
"--output", type=str, required=True, help="Path to save the generated plot."
)
args = parser.parse_args()
if args.plot_type == "scatter":
if not args.actual_values or not args.predicted_values:
print(
"Error: --actual_values and --predicted_values are required for scatter plots."
)
return
generate_scatter_plot(args.actual_values, args.predicted_values, args.output)
elif args.plot_type == "histogram":
if not args.errors:
print("Error: --errors is required for histograms.")
return
generate_histogram(args.errors, args.output)
elif args.plot_type == "residual":
if not args.actual_values or not args.predicted_values:
print(
"Error: --actual_values and --predicted_values are required for residual plots."
)
return
generate_residual_plot(args.actual_values, args.predicted_values, args.output)
if __name__ == "__main__":
main()