{ "_comment": "Template for defining the hyperparameter search space. This file should be used as a guide for creating your own hyperparameter configuration.", "algorithm": { "_comment": "The search algorithm to use. Options: 'grid', 'random', 'bayesian'.", "type": "string", "default": "random", "enum": ["grid", "random", "bayesian"] }, "objective": { "_comment": "The metric to optimize. The plugin will attempt to maximize this metric.", "type": "string", "default": "val_loss" }, "max_trials": { "_comment": "The maximum number of trials to run. Each trial will explore a different set of hyperparameters.", "type": "integer", "default": 10 }, "hyperparameters": { "_comment": "A dictionary of hyperparameters to search. Each key is the name of the hyperparameter, and the value is a dictionary defining the search space for that hyperparameter.", "type": "object", "properties": { "learning_rate": { "_comment": "Example: Learning rate for a neural network.", "type": "number", "distribution": "loguniform", "min": 0.0001, "max": 0.1 }, "num_layers": { "_comment": "Example: Number of layers in a neural network.", "type": "integer", "distribution": "uniform", "min": 2, "max": 6 }, "dropout_rate": { "_comment": "Example: Dropout rate for regularization.", "type": "number", "distribution": "uniform", "min": 0.0, "max": 0.5 }, "batch_size": { "_comment": "Example: Batch size for training.", "type": "integer", "distribution": "categorical", "values": [32, 64, 128, 256] }, "optimizer": { "_comment": "Example: Optimization algorithm to use", "type": "string", "distribution": "categorical", "values": ["adam", "sgd", "rmsprop"] } }, "required": ["learning_rate", "num_layers"] }, "early_stopping": { "_comment": "Parameters for early stopping. If enabled, the tuning process will stop if the objective metric does not improve for a specified number of epochs.", "type": "object", "properties": { "monitor": { "_comment": "The metric to monitor for early stopping.", "type": "string", "default": "val_loss" }, "patience": { "_comment": "The number of epochs with no improvement after which training will be stopped.", "type": "integer", "default": 3 }, "enabled": { "_comment": "Whether early stopping is enabled.", "type": "boolean", "default": true } }, "required": ["monitor", "patience", "enabled"] } }