{ "_comment": "Model configuration template for the classification model builder plugin.", "model_name": "ExampleClassifier", "_comment": "A descriptive name for your model.", "model_type": "RandomForestClassifier", "_comment": "The type of classification model to use (e.g., RandomForestClassifier, LogisticRegression, SVM).", "data_path": "data/training_data.csv", "_comment": "Path to the CSV file containing the training data.", "target_column": "target", "_comment": "The name of the column containing the target variable.", "features": [ "feature1", "feature2", "feature3", "feature4" ], "_comment": "List of column names to use as features. If empty, all columns except the target_column will be used.", "hyperparameters": { "_comment": "Hyperparameters specific to the chosen model type.", "n_estimators": 100, "_comment": "Number of trees in the random forest (example for RandomForestClassifier).", "max_depth": 10, "_comment": "Maximum depth of the trees (example for RandomForestClassifier).", "learning_rate": 0.1 "_comment": "Learning rate for gradient boosting models (example for GradientBoostingClassifier)." }, "training_parameters": { "_comment": "Parameters related to the training process.", "test_size": 0.2, "_comment": "The proportion of the data to use for testing.", "random_state": 42, "_comment": "A random seed for reproducibility.", "stratify": true "_comment": "Whether to stratify the target variable during train/test split." }, "evaluation_metrics": [ "accuracy", "precision", "recall", "f1-score", "roc_auc" ], "_comment": "List of evaluation metrics to compute on the test set.", "model_save_path": "models/example_classifier.pkl", "_comment": "Path to save the trained model.", "feature_importance": true, "_comment": "Boolean value to toggle feature importance calculation.", "preprocessing": { "_comment": "Configuration for data preprocessing steps.", "handle_missing_values": "impute", "_comment": "How to handle missing values (e.g., 'impute', 'remove', 'none').", "missing_value_strategy": "mean", "_comment": "Strategy for imputation (e.g., 'mean', 'median', 'most_frequent').", "scale_features": true, "_comment": "Whether to scale numerical features using StandardScaler or similar.", "feature_scaling_method": "standard" "_comment": "Method to use for feature scaling ('standard' or 'minmax')." } }