Initial commit
This commit is contained in:
15
.claude-plugin/plugin.json
Normal file
15
.claude-plugin/plugin.json
Normal file
@@ -0,0 +1,15 @@
|
||||
{
|
||||
"name": "classification-model-builder",
|
||||
"description": "Build classification models",
|
||||
"version": "1.0.0",
|
||||
"author": {
|
||||
"name": "Claude Code Plugins",
|
||||
"email": "[email protected]"
|
||||
},
|
||||
"skills": [
|
||||
"./skills"
|
||||
],
|
||||
"commands": [
|
||||
"./commands"
|
||||
]
|
||||
}
|
||||
3
README.md
Normal file
3
README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# classification-model-builder
|
||||
|
||||
Build classification models
|
||||
15
commands/build-classifier.md
Normal file
15
commands/build-classifier.md
Normal file
@@ -0,0 +1,15 @@
|
||||
---
|
||||
description: Execute AI/ML task with intelligent automation
|
||||
---
|
||||
|
||||
# AI/ML Task Executor
|
||||
|
||||
You are an AI/ML specialist. When this command is invoked:
|
||||
|
||||
1. Analyze the current context and requirements
|
||||
2. Generate appropriate code for the ML task
|
||||
3. Include data validation and error handling
|
||||
4. Provide performance metrics and insights
|
||||
5. Save artifacts and generate documentation
|
||||
|
||||
Support modern ML frameworks and best practices.
|
||||
65
plugin.lock.json
Normal file
65
plugin.lock.json
Normal file
@@ -0,0 +1,65 @@
|
||||
{
|
||||
"$schema": "internal://schemas/plugin.lock.v1.json",
|
||||
"pluginId": "gh:jeremylongshore/claude-code-plugins-plus:plugins/ai-ml/classification-model-builder",
|
||||
"normalized": {
|
||||
"repo": null,
|
||||
"ref": "refs/tags/v20251128.0",
|
||||
"commit": "29012716cc45a55b174fc11d37814310b9595b18",
|
||||
"treeHash": "4b20839a4de31732f9809004baab007840820b00652b7ae3345e60cc446037f9",
|
||||
"generatedAt": "2025-11-28T10:18:12.863029Z",
|
||||
"toolVersion": "publish_plugins.py@0.2.0"
|
||||
},
|
||||
"origin": {
|
||||
"remote": "git@github.com:zhongweili/42plugin-data.git",
|
||||
"branch": "master",
|
||||
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
|
||||
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
|
||||
},
|
||||
"manifest": {
|
||||
"name": "classification-model-builder",
|
||||
"description": "Build classification models",
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"content": {
|
||||
"files": [
|
||||
{
|
||||
"path": "README.md",
|
||||
"sha256": "b4fbc607cd6daefb6e34102a984bfcec3ed5d9a0aeaa7284387607dd11f44f32"
|
||||
},
|
||||
{
|
||||
"path": ".claude-plugin/plugin.json",
|
||||
"sha256": "7e80bf4c992b6a667ca33016f282153a36feed9e9655a48ea1d7054eb366a8bb"
|
||||
},
|
||||
{
|
||||
"path": "commands/build-classifier.md",
|
||||
"sha256": "043efb83e2f02fc6d0869c8a3a7388d6e49f6c809292b93dd6a97a1b142e5647"
|
||||
},
|
||||
{
|
||||
"path": "skills/classification-model-builder/SKILL.md",
|
||||
"sha256": "145226f0d43d399857ddd469bdcf553157ca3f115cd856af074e659bf4fcfbf0"
|
||||
},
|
||||
{
|
||||
"path": "skills/classification-model-builder/references/README.md",
|
||||
"sha256": "7137f7951c677b69c02b54378c6baede8a3f2f5b12444b42fb07748b162be364"
|
||||
},
|
||||
{
|
||||
"path": "skills/classification-model-builder/scripts/README.md",
|
||||
"sha256": "f34b55e139dd729e7c01f2565a2e4d9067a3c8b4c112507c9a9025a8d08e1513"
|
||||
},
|
||||
{
|
||||
"path": "skills/classification-model-builder/assets/model_config_template.json",
|
||||
"sha256": "155440871a59cde5686deb5612c8ae96c9430cc0ef44609bedc40b95ead23164"
|
||||
},
|
||||
{
|
||||
"path": "skills/classification-model-builder/assets/README.md",
|
||||
"sha256": "9fa0cab51814ea07fe24bae19e5952b995ae6c546b446725e2519586b1a4b177"
|
||||
}
|
||||
],
|
||||
"dirSha256": "4b20839a4de31732f9809004baab007840820b00652b7ae3345e60cc446037f9"
|
||||
},
|
||||
"security": {
|
||||
"scannedAt": null,
|
||||
"scannerVersion": null,
|
||||
"flags": []
|
||||
}
|
||||
}
|
||||
52
skills/classification-model-builder/SKILL.md
Normal file
52
skills/classification-model-builder/SKILL.md
Normal file
@@ -0,0 +1,52 @@
|
||||
---
|
||||
name: building-classification-models
|
||||
description: |
|
||||
This skill enables Claude to construct and evaluate classification models using provided datasets or specifications. It leverages the classification-model-builder plugin to automate model creation, optimization, and reporting. Use this skill when the user requests to "build a classifier", "create a classification model", "train a classification model", or needs help with supervised learning tasks involving labeled data. The skill ensures best practices are followed, including data validation, error handling, and performance metric reporting.
|
||||
allowed-tools: Read, Write, Edit, Grep, Glob, Bash
|
||||
version: 1.0.0
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
This skill empowers Claude to efficiently build and deploy classification models. It automates the process of model selection, training, and evaluation, providing users with a robust and reliable classification solution. The skill also provides insights into model performance and suggests potential improvements.
|
||||
|
||||
## How It Works
|
||||
|
||||
1. **Context Analysis**: Claude analyzes the user's request, identifying the dataset, target variable, and any specific requirements for the classification model.
|
||||
2. **Model Generation**: The skill utilizes the classification-model-builder plugin to generate code for training a classification model based on the identified dataset and requirements. This includes data preprocessing, feature selection, model selection, and hyperparameter tuning.
|
||||
3. **Evaluation and Reporting**: The generated model is trained and evaluated using appropriate metrics (e.g., accuracy, precision, recall, F1-score). Performance metrics and insights are then provided to the user.
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
This skill activates when you need to:
|
||||
- Build a classification model from a given dataset.
|
||||
- Train a classifier to predict categorical outcomes.
|
||||
- Evaluate the performance of a classification model.
|
||||
|
||||
## Examples
|
||||
|
||||
### Example 1: Building a Spam Classifier
|
||||
|
||||
User request: "Build a classifier to detect spam emails using this dataset."
|
||||
|
||||
The skill will:
|
||||
1. Analyze the provided email dataset to identify features and the target variable (spam/not spam).
|
||||
2. Generate Python code using the classification-model-builder plugin to train a spam classification model, including data cleaning, feature extraction, and model selection.
|
||||
|
||||
### Example 2: Predicting Customer Churn
|
||||
|
||||
User request: "Create a classification model to predict customer churn using customer data."
|
||||
|
||||
The skill will:
|
||||
1. Analyze the customer data to identify relevant features and the churn status.
|
||||
2. Generate code to build a classification model for churn prediction, including data validation, model training, and performance reporting.
|
||||
|
||||
## Best Practices
|
||||
|
||||
- **Data Quality**: Ensure the input data is clean and preprocessed before training the model.
|
||||
- **Model Selection**: Choose the appropriate classification algorithm based on the characteristics of the data and the specific requirements of the task.
|
||||
- **Hyperparameter Tuning**: Optimize the model's hyperparameters to achieve the best possible performance.
|
||||
|
||||
## Integration
|
||||
|
||||
This skill integrates with the classification-model-builder plugin to automate the model building process. It can also be used in conjunction with other plugins for data analysis and visualization.
|
||||
7
skills/classification-model-builder/assets/README.md
Normal file
7
skills/classification-model-builder/assets/README.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Assets
|
||||
|
||||
Bundled resources for classification-model-builder skill
|
||||
|
||||
- [ ] model_config_template.json: A template JSON file for specifying model configurations, including hyperparameters and training parameters.
|
||||
- [ ] example_dataset.csv: A sample CSV dataset that can be used for testing the classification model builder.
|
||||
- [ ] report_template.html: An HTML template for generating the model performance report.
|
||||
@@ -0,0 +1,59 @@
|
||||
{
|
||||
"_comment": "Model configuration template for the classification model builder plugin.",
|
||||
"model_name": "ExampleClassifier",
|
||||
"_comment": "A descriptive name for your model.",
|
||||
"model_type": "RandomForestClassifier",
|
||||
"_comment": "The type of classification model to use (e.g., RandomForestClassifier, LogisticRegression, SVM).",
|
||||
"data_path": "data/training_data.csv",
|
||||
"_comment": "Path to the CSV file containing the training data.",
|
||||
"target_column": "target",
|
||||
"_comment": "The name of the column containing the target variable.",
|
||||
"features": [
|
||||
"feature1",
|
||||
"feature2",
|
||||
"feature3",
|
||||
"feature4"
|
||||
],
|
||||
"_comment": "List of column names to use as features. If empty, all columns except the target_column will be used.",
|
||||
"hyperparameters": {
|
||||
"_comment": "Hyperparameters specific to the chosen model type.",
|
||||
"n_estimators": 100,
|
||||
"_comment": "Number of trees in the random forest (example for RandomForestClassifier).",
|
||||
"max_depth": 10,
|
||||
"_comment": "Maximum depth of the trees (example for RandomForestClassifier).",
|
||||
"learning_rate": 0.1
|
||||
"_comment": "Learning rate for gradient boosting models (example for GradientBoostingClassifier)."
|
||||
},
|
||||
"training_parameters": {
|
||||
"_comment": "Parameters related to the training process.",
|
||||
"test_size": 0.2,
|
||||
"_comment": "The proportion of the data to use for testing.",
|
||||
"random_state": 42,
|
||||
"_comment": "A random seed for reproducibility.",
|
||||
"stratify": true
|
||||
"_comment": "Whether to stratify the target variable during train/test split."
|
||||
},
|
||||
"evaluation_metrics": [
|
||||
"accuracy",
|
||||
"precision",
|
||||
"recall",
|
||||
"f1-score",
|
||||
"roc_auc"
|
||||
],
|
||||
"_comment": "List of evaluation metrics to compute on the test set.",
|
||||
"model_save_path": "models/example_classifier.pkl",
|
||||
"_comment": "Path to save the trained model.",
|
||||
"feature_importance": true,
|
||||
"_comment": "Boolean value to toggle feature importance calculation.",
|
||||
"preprocessing": {
|
||||
"_comment": "Configuration for data preprocessing steps.",
|
||||
"handle_missing_values": "impute",
|
||||
"_comment": "How to handle missing values (e.g., 'impute', 'remove', 'none').",
|
||||
"missing_value_strategy": "mean",
|
||||
"_comment": "Strategy for imputation (e.g., 'mean', 'median', 'most_frequent').",
|
||||
"scale_features": true,
|
||||
"_comment": "Whether to scale numerical features using StandardScaler or similar.",
|
||||
"feature_scaling_method": "standard"
|
||||
"_comment": "Method to use for feature scaling ('standard' or 'minmax')."
|
||||
}
|
||||
}
|
||||
8
skills/classification-model-builder/references/README.md
Normal file
8
skills/classification-model-builder/references/README.md
Normal file
@@ -0,0 +1,8 @@
|
||||
# References
|
||||
|
||||
Bundled resources for classification-model-builder skill
|
||||
|
||||
- [ ] model_evaluation_metrics.md: Detailed explanations of various classification model evaluation metrics (accuracy, precision, recall, F1-score, AUC-ROC) and their interpretation.
|
||||
- [ ] data_preprocessing_guide.md: Best practices for data preprocessing, including handling missing values, feature scaling, and encoding categorical variables.
|
||||
- [ ] model_selection_guide.md: Guidelines for selecting the appropriate classification model based on the characteristics of the dataset and the problem being solved.
|
||||
- [ ] hyperparameter_tuning.md: Techniques for hyperparameter tuning to optimize model performance.
|
||||
7
skills/classification-model-builder/scripts/README.md
Normal file
7
skills/classification-model-builder/scripts/README.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Scripts
|
||||
|
||||
Bundled resources for classification-model-builder skill
|
||||
|
||||
- [ ] model_builder.py: Automates the process of building, training, and evaluating classification models. Takes dataset path and model configuration as input.
|
||||
- [ ] data_validator.py: Validates the input dataset for common issues like missing values, incorrect data types, and imbalanced classes.
|
||||
- [ ] report_generator.py: Generates a comprehensive report of the model's performance, including metrics like accuracy, precision, recall, and F1-score.
|
||||
Reference in New Issue
Block a user