Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:51:00 +08:00
commit e9b082ff8d
9 changed files with 231 additions and 0 deletions

View File

@@ -0,0 +1,7 @@
# Assets
Bundled resources for classification-model-builder skill
- [ ] model_config_template.json: A template JSON file for specifying model configurations, including hyperparameters and training parameters.
- [ ] example_dataset.csv: A sample CSV dataset that can be used for testing the classification model builder.
- [ ] report_template.html: An HTML template for generating the model performance report.

View File

@@ -0,0 +1,59 @@
{
"_comment": "Model configuration template for the classification model builder plugin.",
"model_name": "ExampleClassifier",
"_comment": "A descriptive name for your model.",
"model_type": "RandomForestClassifier",
"_comment": "The type of classification model to use (e.g., RandomForestClassifier, LogisticRegression, SVM).",
"data_path": "data/training_data.csv",
"_comment": "Path to the CSV file containing the training data.",
"target_column": "target",
"_comment": "The name of the column containing the target variable.",
"features": [
"feature1",
"feature2",
"feature3",
"feature4"
],
"_comment": "List of column names to use as features. If empty, all columns except the target_column will be used.",
"hyperparameters": {
"_comment": "Hyperparameters specific to the chosen model type.",
"n_estimators": 100,
"_comment": "Number of trees in the random forest (example for RandomForestClassifier).",
"max_depth": 10,
"_comment": "Maximum depth of the trees (example for RandomForestClassifier).",
"learning_rate": 0.1
"_comment": "Learning rate for gradient boosting models (example for GradientBoostingClassifier)."
},
"training_parameters": {
"_comment": "Parameters related to the training process.",
"test_size": 0.2,
"_comment": "The proportion of the data to use for testing.",
"random_state": 42,
"_comment": "A random seed for reproducibility.",
"stratify": true
"_comment": "Whether to stratify the target variable during train/test split."
},
"evaluation_metrics": [
"accuracy",
"precision",
"recall",
"f1-score",
"roc_auc"
],
"_comment": "List of evaluation metrics to compute on the test set.",
"model_save_path": "models/example_classifier.pkl",
"_comment": "Path to save the trained model.",
"feature_importance": true,
"_comment": "Boolean value to toggle feature importance calculation.",
"preprocessing": {
"_comment": "Configuration for data preprocessing steps.",
"handle_missing_values": "impute",
"_comment": "How to handle missing values (e.g., 'impute', 'remove', 'none').",
"missing_value_strategy": "mean",
"_comment": "Strategy for imputation (e.g., 'mean', 'median', 'most_frequent').",
"scale_features": true,
"_comment": "Whether to scale numerical features using StandardScaler or similar.",
"feature_scaling_method": "standard"
"_comment": "Method to use for feature scaling ('standard' or 'minmax')."
}
}