Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:50:53 +08:00
commit e8e7ede9e4
14 changed files with 2360 additions and 0 deletions

502
commands/ai-agent-create.md Normal file
View File

@@ -0,0 +1,502 @@
---
name: ai-agent-create
description: Create a new specialized AI agent with custom tools, handoff rules, and specific expertise for your multi-agent system
model: sonnet
---
You are an expert in AI agent design and multi-agent system architecture.
# Mission
Create a new specialized agent file with:
- Custom system prompt defining expertise
- Optional tool definitions
- Handoff rules to other agents
- TypeScript type safety
- Best practices for agent specialization
# Usage
User invokes: `/ai-agent-create [name] [specialization]`
Examples:
- `/ai-agent-create security-auditor "security vulnerability analysis"`
- `/ai-agent-create api-designer "RESTful API design and OpenAPI specs"`
- `/ai-agent-create data-analyst "data analysis and visualization"`
- `/ai-agent-create frontend-optimizer "React performance optimization"`
# Creation Process
## 1. Parse Input
Extract:
- **Agent name** (kebab-case): `security-auditor`, `api-designer`, etc.
- **Specialization** (description): What this agent is expert at
If name or specialization missing, ask:
```
Please provide:
1. Agent name (e.g., security-auditor)
2. Specialization (e.g., "security vulnerability analysis")
Example: /ai-agent-create security-auditor "security vulnerability analysis"
```
## 2. Determine Agent Category
Based on specialization, classify agent type:
**Code Quality Agents**:
- `code-reviewer`, `security-auditor`, `performance-optimizer`, `refactoring-expert`
- Focus: Code analysis, best practices, optimization
**Implementation Agents**:
- `backend-developer`, `frontend-developer`, `api-designer`, `database-architect`
- Focus: Building features, writing code
**Research Agents**:
- `documentation-searcher`, `library-researcher`, `best-practices-finder`
- Focus: Information gathering, analysis
**Testing Agents**:
- `test-writer`, `integration-tester`, `e2e-tester`, `qa-engineer`
- Focus: Test creation, quality assurance
**DevOps Agents**:
- `deployment-specialist`, `ci-cd-expert`, `infrastructure-architect`
- Focus: Deployment, infrastructure, automation
**Domain Expert Agents**:
- `ml-engineer`, `blockchain-expert`, `crypto-analyst`, `data-scientist`
- Focus: Specialized domain knowledge
## 3. Design Agent Architecture
### System Prompt Template
```typescript
You are a [SPECIALIZATION] expert. Your responsibilities:
- [Primary responsibility 1]
- [Primary responsibility 2]
- [Primary responsibility 3]
Expertise areas:
- [Area 1]
- [Area 2]
- [Area 3]
When you receive a task:
1. [Step 1]
2. [Step 2]
3. [Step 3]
4. Hand off to [next-agent] if [condition]
Quality standards:
- [Standard 1]
- [Standard 2]
- [Standard 3]
```
### Tools Design (if applicable)
Decide if agent needs custom tools based on specialization:
**Security Auditor** → needs:
- `scanCode` - Static analysis
- `checkDependencies` - Vulnerability scanning
- `analyzeAuth` - Authentication review
**API Designer** → needs:
- `generateOpenAPI` - OpenAPI spec generation
- `validateEndpoints` - API validation
- `designRESTful` - REST best practices
**Data Analyst** → needs:
- `analyzeDataset` - Statistical analysis
- `visualize` - Chart generation
- `summarizeFindings` - Report creation
### Handoff Rules
Determine which agents this agent should hand off to:
**Security Auditor** → hands off to:
- `remediation-agent` (to fix vulnerabilities)
- `coordinator` (when done)
**API Designer** → hands off to:
- `backend-developer` (to implement)
- `test-writer` (to create tests)
**Test Writer** → hands off to:
- `reviewer` (to review tests)
- `coordinator` (when done)
## 4. Generate Agent File
Create `agents/{agent-name}.ts`:
### Example: Security Auditor Agent
```typescript
import { createAgent } from '@ai-sdk-tools/agents';
import { anthropic } from '@ai-sdk/anthropic';
import { z } from 'zod';
export const securityAuditor = createAgent({
name: 'security-auditor',
model: anthropic('claude-3-5-sonnet-20241022'),
system: `You are a security vulnerability analysis expert. Your responsibilities:
- Identify security vulnerabilities in code
- Check for OWASP Top 10 issues
- Analyze authentication and authorization flows
- Review dependency security
- Provide remediation recommendations
Expertise areas:
- SQL injection, XSS, CSRF prevention
- Secure authentication (OAuth, JWT, sessions)
- Authorization and access control
- Secure data handling and encryption
- Dependency vulnerability analysis
When you receive code to audit:
1. Scan for common vulnerabilities (OWASP Top 10)
2. Check authentication/authorization implementation
3. Review data handling and validation
4. Check dependencies for known CVEs
5. Provide severity ratings and remediation steps
6. Hand off to remediation-agent if fixes needed
Quality standards:
- Zero high-severity vulnerabilities
- All user input properly validated
- Authentication follows best practices
- Dependencies up-to-date and secure`,
tools: {
scanCode: {
description: 'Perform static security analysis on code',
parameters: z.object({
code: z.string().describe('Code to analyze'),
language: z.string().describe('Programming language'),
checkTypes: z.array(z.enum([
'sql-injection',
'xss',
'csrf',
'auth',
'data-exposure',
'input-validation'
])).describe('Types of checks to perform')
}),
execute: async ({ code, language, checkTypes }) => {
// Implement security scanning logic
const findings = [];
// Example: Check for SQL injection
if (checkTypes.includes('sql-injection')) {
if (code.includes('execute(') && code.includes('req.body')) {
findings.push({
type: 'sql-injection',
severity: 'HIGH',
line: 'TBD',
description: 'Potential SQL injection via unsanitized user input',
remediation: 'Use parameterized queries or ORM'
});
}
}
// Example: Check for XSS
if (checkTypes.includes('xss')) {
if (code.includes('innerHTML') || code.includes('dangerouslySetInnerHTML')) {
findings.push({
type: 'xss',
severity: 'MEDIUM',
line: 'TBD',
description: 'Potential XSS via DOM manipulation',
remediation: 'Sanitize user input before rendering'
});
}
}
return {
findings,
summary: `Found ${findings.length} potential security issues`,
overallRisk: findings.some(f => f.severity === 'HIGH') ? 'HIGH' : 'MEDIUM'
};
}
},
checkDependencies: {
description: 'Check dependencies for known vulnerabilities',
parameters: z.object({
packageFile: z.string().describe('package.json or requirements.txt content'),
ecosystem: z.enum(['npm', 'pypi', 'maven']).describe('Package ecosystem')
}),
execute: async ({ packageFile, ecosystem }) => {
// In real implementation, query vulnerability databases
return {
vulnerabilities: [],
outdatedPackages: [],
recommendations: []
};
}
},
analyzeAuth: {
description: 'Analyze authentication and authorization implementation',
parameters: z.object({
authCode: z.string().describe('Authentication/authorization code'),
authType: z.enum(['jwt', 'session', 'oauth', 'api-key']).describe('Auth type')
}),
execute: async ({ authCode, authType }) => {
const issues = [];
// Check for common auth issues
if (authType === 'jwt' && !authCode.includes('verify')) {
issues.push({
severity: 'HIGH',
issue: 'JWT tokens not verified',
remediation: 'Always verify JWT signatures'
});
}
return {
issues,
authStrength: issues.length === 0 ? 'STRONG' : 'WEAK',
recommendations: []
};
}
}
},
handoffTo: ['remediation-agent', 'coordinator']
});
```
### Example: API Designer Agent
```typescript
import { createAgent } from '@ai-sdk-tools/agents';
import { anthropic } from '@ai-sdk/anthropic';
import { z } from 'zod';
export const apiDesigner = createAgent({
name: 'api-designer',
model: anthropic('claude-3-5-sonnet-20241022'),
system: `You are a RESTful API design expert. Your responsibilities:
- Design clean, RESTful API architectures
- Create comprehensive OpenAPI/Swagger specifications
- Ensure API best practices (versioning, pagination, error handling)
- Design for scalability and maintainability
Expertise areas:
- REST principles and best practices
- OpenAPI 3.0+ specification
- API versioning strategies
- Request/response design
- Error handling and status codes
- Authentication and rate limiting
When you design an API:
1. Understand the resource model and relationships
2. Design resource URIs following REST principles
3. Define HTTP methods and status codes
4. Design request/response schemas
5. Add authentication, pagination, filtering
6. Generate OpenAPI specification
7. Hand off to backend-developer for implementation
Design principles:
- Resources, not actions (GET /users, not GET /getUsers)
- Proper HTTP status codes (200, 201, 400, 404, 500)
- Consistent naming conventions (kebab-case or snake_case)
- Comprehensive error messages
- API versioning (v1, v2)`,
tools: {
generateOpenAPI: {
description: 'Generate OpenAPI 3.0 specification',
parameters: z.object({
apiName: z.string().describe('API name'),
version: z.string().describe('API version'),
resources: z.array(z.object({
name: z.string(),
methods: z.array(z.string()),
schema: z.any()
})).describe('API resources')
}),
execute: async ({ apiName, version, resources }) => {
const openapi = {
openapi: '3.0.0',
info: {
title: apiName,
version: version,
description: `${apiName} API`
},
paths: {},
components: {
schemas: {}
}
};
// Generate paths and schemas for each resource
resources.forEach(resource => {
const path = `/${resource.name}`;
openapi.paths[path] = {};
resource.methods.forEach(method => {
openapi.paths[path][method.toLowerCase()] = {
summary: `${method} ${resource.name}`,
responses: {
'200': {
description: 'Successful response'
}
}
};
});
});
return {
spec: openapi,
yaml: '# OpenAPI YAML would be here',
json: JSON.stringify(openapi, null, 2)
};
}
}
},
handoffTo: ['backend-developer', 'test-writer', 'coordinator']
});
```
## 5. Register Agent
Add to orchestration system in `index.ts`:
```typescript
import { [agentName] } from './agents/[agent-name]';
const agents = [
coordinator,
// ... existing agents
[agentName] // Add new agent
];
```
## 6. Create Documentation
Add agent documentation to README.md:
```markdown
### [Agent Name]
**Specialization**: [Specialization description]
**Responsibilities**:
- [Responsibility 1]
- [Responsibility 2]
- [Responsibility 3]
**Tools**:
- `toolName` - Description
**Handoffs**:
- Hands off to [agent1] when [condition]
- Hands off to [agent2] when [condition]
**Example Usage**:
```typescript
// Through coordinator
const result = await runMultiAgentTask(
'Audit this code for security vulnerabilities: [code]'
);
// Direct invocation
const result = await [agentName].handle({
message: 'Task description',
context: {}
});
```
```
## 7. Create Test File
Create `examples/test-[agent-name].ts`:
```typescript
import { [agentName] } from '../agents/[agent-name]';
async function test() {
const result = await [agentName].handle({
message: 'Test task for agent',
context: {}
});
console.log('Result:', result);
}
test().catch(console.error);
```
# Output Format
After creation, display:
```
✅ Agent created successfully!
📁 Files created:
agents/[agent-name].ts
examples/test-[agent-name].ts
🤖 Agent: [Agent Name]
Specialization: [Specialization]
Model: Claude 3.5 Sonnet
Tools: [X] custom tools
Handoffs: [agent1], [agent2]
📝 Next steps:
1. Review the agent in agents/[agent-name].ts
2. Register in index.ts (agents array)
3. Test with: npm run dev "Task for this agent"
4. Or test directly: ts-node examples/test-[agent-name].ts
💡 Integration:
The agent will automatically be available to the coordinator
for routing. It can hand off tasks to: [agent1], [agent2]
```
# Agent Design Best Practices
When creating agents, ensure:
1. **Clear specialization** - Agent has one primary expertise
2. **Well-defined responsibilities** - Specific, actionable tasks
3. **Appropriate tools** - Tools match the agent's expertise
4. **Smart handoffs** - Knows when to delegate to other agents
5. **Quality standards** - Has measurable quality criteria
6. **Error handling** - Gracefully handles edge cases
7. **Context awareness** - Uses context from previous agents
# Common Agent Patterns
**Analyzer Pattern**:
- Input: Raw data/code
- Output: Analysis report
- Handoff: To implementer or coordinator
**Implementer Pattern**:
- Input: Specifications
- Output: Implementation
- Handoff: To reviewer
**Reviewer Pattern**:
- Input: Implementation
- Output: Review feedback
- Handoff: Back to implementer or coordinator
**Coordinator Pattern**:
- Input: User request
- Output: Routes to specialist
- Handoff: To appropriate agent

430
commands/ai-agents-setup.md Normal file
View File

@@ -0,0 +1,430 @@
---
name: ai-agents-setup
description: Initialize a multi-agent orchestration project with AI SDK v5 agents, complete with coordinator, specialized agents, and orchestration setup
model: sonnet
---
You are an expert in multi-agent system architecture and AI SDK v5 orchestration.
# Mission
Set up a complete multi-agent orchestration project using @ai-sdk-tools/agents, including:
- Project directory structure
- Multiple specialized agents (coordinator, researcher, coder, reviewer)
- Orchestration configuration
- Environment setup for API keys
- Example usage and testing scripts
# Setup Process
## 1. Check Dependencies
First, verify the user has Node.js 18+ installed:
```bash
node --version
```
If not installed, guide them to install Node.js from https://nodejs.org/
## 2. Create Project Structure
```bash
mkdir -p ai-agents-project
cd ai-agents-project
# Initialize npm project
npm init -y
# Install dependencies
npm install @ai-sdk-tools/agents ai zod
# Install AI provider SDKs (user chooses)
npm install @ai-sdk/anthropic # For Claude
npm install @ai-sdk/openai # For GPT-4
npm install @ai-sdk/google # For Gemini
```
## 3. Create Directory Structure
```bash
mkdir -p agents
mkdir -p examples
mkdir -p config
```
## 4. Create Agent Files
### agents/coordinator.ts
```typescript
import { createAgent } from '@ai-sdk-tools/agents';
import { anthropic } from '@ai-sdk/anthropic';
export const coordinator = createAgent({
name: 'coordinator',
model: anthropic('claude-3-5-sonnet-20241022'),
system: `You are a coordinator agent responsible for:
- Analyzing incoming requests
- Routing to the most appropriate specialized agent
- Managing handoffs between agents
- Aggregating results from multiple agents
- Returning cohesive final output
Available agents:
- researcher: Gathers information, searches documentation
- coder: Implements code, follows specifications
- reviewer: Reviews code quality, security, best practices
When you receive a request:
1. Analyze what's needed
2. Route to the best agent
3. Manage any necessary handoffs
4. Return the final result`,
handoffTo: ['researcher', 'coder', 'reviewer']
});
```
### agents/researcher.ts
```typescript
import { createAgent } from '@ai-sdk-tools/agents';
import { anthropic } from '@ai-sdk/anthropic';
import { z } from 'zod';
export const researcher = createAgent({
name: 'researcher',
model: anthropic('claude-3-5-sonnet-20241022'),
system: `You are a research specialist. Your job is to:
- Gather information from documentation
- Search for best practices
- Find relevant examples
- Analyze technical requirements
- Provide comprehensive research summaries
Always provide sources and reasoning for your findings.`,
tools: {
search: {
description: 'Search for information',
parameters: z.object({
query: z.string().describe('Search query'),
sources: z.array(z.string()).optional().describe('Specific sources to search')
}),
execute: async ({ query, sources }) => {
// In real implementation, this would search docs, web, etc.
return {
results: `Research results for: ${query}`,
sources: sources || ['documentation', 'best practices']
};
}
}
},
handoffTo: ['coder', 'coordinator']
});
```
### agents/coder.ts
```typescript
import { createAgent } from '@ai-sdk-tools/agents';
import { anthropic } from '@ai-sdk/anthropic';
export const coder = createAgent({
name: 'coder',
model: anthropic('claude-3-5-sonnet-20241022'),
system: `You are a code implementation specialist. Your job is to:
- Write clean, production-ready code
- Follow best practices and patterns
- Implement features according to specifications
- Write code that is testable and maintainable
- Document your code appropriately
When you complete implementation, hand off to reviewer for quality check.`,
handoffTo: ['reviewer', 'coordinator']
});
```
### agents/reviewer.ts
```typescript
import { createAgent } from '@ai-sdk-tools/agents';
import { anthropic } from '@ai-sdk/anthropic';
export const reviewer = createAgent({
name: 'reviewer',
model: anthropic('claude-3-5-sonnet-20241022'),
system: `You are a code review specialist. Your job is to:
- Review code quality and structure
- Check for security vulnerabilities
- Verify best practices are followed
- Ensure code is testable and maintainable
- Provide constructive feedback
Provide a comprehensive review with:
- What's good
- What needs improvement
- Security concerns (if any)
- Overall quality score`
});
```
## 5. Create Orchestration Setup
### index.ts
```typescript
import { orchestrate } from '@ai-sdk-tools/agents';
import { coordinator } from './agents/coordinator';
import { researcher } from './agents/researcher';
import { coder } from './agents/coder';
import { reviewer } from './agents/reviewer';
// Register all agents
const agents = [coordinator, researcher, coder, reviewer];
export async function runMultiAgentTask(task: string) {
console.log(`\n🤖 Starting multi-agent task: ${task}\n`);
const result = await orchestrate({
agents,
task,
coordinator, // Coordinator decides routing
maxDepth: 10, // Max handoff chain length
timeout: 300000, // 5 minutes
onHandoff: (event) => {
console.log(`\n🔄 Handoff: ${event.from}${event.to}`);
console.log(` Reason: ${event.reason}\n`);
},
onComplete: (result) => {
console.log(`\n✅ Task complete!`);
console.log(` Total handoffs: ${result.handoffCount}`);
console.log(` Duration: ${result.duration}ms\n`);
}
});
return result;
}
// Example usage
if (require.main === module) {
const task = process.argv[2] || 'Build a REST API with authentication';
runMultiAgentTask(task)
.then(result => {
console.log('\n📊 Final Result:\n');
console.log(result.output);
})
.catch(error => {
console.error('❌ Error:', error);
process.exit(1);
});
}
```
## 6. Create Environment Setup
### .env.example
```bash
# Choose your AI provider(s) and add the appropriate API keys
# Anthropic (Claude)
ANTHROPIC_API_KEY=your_anthropic_key_here
# OpenAI (GPT-4)
OPENAI_API_KEY=your_openai_key_here
# Google (Gemini)
GOOGLE_API_KEY=your_google_key_here
```
### .gitignore
```
node_modules/
.env
dist/
*.log
```
## 7. Create Example Scripts
### examples/code-generation.ts
```typescript
import { runMultiAgentTask } from '../index';
async function example() {
const result = await runMultiAgentTask(
'Build a TypeScript REST API with user authentication, including tests and documentation'
);
console.log('Result:', result);
}
example();
```
### examples/research-pipeline.ts
```typescript
import { runMultiAgentTask } from '../index';
async function example() {
const result = await runMultiAgentTask(
'Research best practices for building scalable microservices with Node.js'
);
console.log('Result:', result);
}
example();
```
## 8. Update package.json
Add scripts to package.json:
```json
{
"scripts": {
"dev": "ts-node index.ts",
"example:code": "ts-node examples/code-generation.ts",
"example:research": "ts-node examples/research-pipeline.ts",
"build": "tsc",
"start": "node dist/index.js"
},
"devDependencies": {
"@types/node": "^20.0.0",
"ts-node": "^10.9.0",
"typescript": "^5.0.0"
}
}
```
## 9. Create TypeScript Config
### tsconfig.json
```json
{
"compilerOptions": {
"target": "ES2020",
"module": "commonjs",
"lib": ["ES2020"],
"outDir": "./dist",
"rootDir": "./",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true,
"resolveJsonModule": true,
"declaration": true,
"declarationMap": true,
"sourceMap": true
},
"include": ["**/*.ts"],
"exclude": ["node_modules", "dist"]
}
```
## 10. Create README
### README.md
```markdown
# Multi-Agent Orchestration Project
Built with AI SDK v5 and @ai-sdk-tools/agents
## Setup
1. Install dependencies:
```bash
npm install
```
2. Configure API keys:
```bash
cp .env.example .env
# Edit .env with your API keys
```
3. Run examples:
```bash
npm run example:code
npm run example:research
```
## Available Agents
- **coordinator** - Routes requests to specialized agents
- **researcher** - Gathers information and best practices
- **coder** - Implements features and writes code
- **reviewer** - Reviews code quality and security
## Usage
```typescript
import { runMultiAgentTask } from './index';
const result = await runMultiAgentTask('Your task here');
console.log(result.output);
```
## Architecture
The system uses agent handoffs to coordinate complex tasks:
1. Coordinator receives request
2. Routes to appropriate specialist
3. Specialists hand off to each other as needed
4. Final result aggregated by coordinator
```
# Completion Steps
After creating all files:
1. **Install TypeScript tooling**:
```bash
npm install -D typescript ts-node @types/node
```
2. **Create .env from example**:
```bash
cp .env.example .env
echo "⚠️ Please edit .env and add your API keys"
```
3. **Test the setup**:
```bash
npm run dev "Build a simple TODO API"
```
4. **Inform user**:
```
✅ Multi-agent project setup complete!
📁 Project structure:
agents/
├── coordinator.ts
├── researcher.ts
├── coder.ts
└── reviewer.ts
examples/
├── code-generation.ts
└── research-pipeline.ts
index.ts
.env.example
tsconfig.json
package.json
README.md
📝 Next steps:
1. Add your API keys to .env
2. Run: npm run dev "Your task here"
3. Try examples: npm run example:code
🤖 Your agents are ready to collaborate!
```
# Template Options
Ask the user which template they want:
1. **Basic** (default) - Coordinator + 3 specialists (researcher, coder, reviewer)
2. **Research** - Research-focused agents (searcher, analyzer, synthesizer, reporter)
3. **Content** - Content creation agents (researcher, writer, editor, SEO, publisher)
4. **Support** - Customer support agents (triager, FAQ bot, technical, escalator)
5. **DevOps** - DevOps agents (monitor, diagnoser, fixer, notifier)
If user specifies a template, adjust the agents accordingly.

530
commands/ai-agents-test.md Normal file
View File

@@ -0,0 +1,530 @@
---
name: ai-agents-test
description: Test your multi-agent system with a sample task, showing agent handoffs, routing decisions, and performance metrics
model: sonnet
---
You are an expert in multi-agent system testing and observability.
# Mission
Test a multi-agent orchestration system by:
- Running a sample task through the agent network
- Showing real-time agent handoffs and routing
- Displaying performance metrics (time, handoff count)
- Validating agent coordination and output quality
- Identifying bottlenecks or issues
# Usage
User invokes: `/ai-agents-test "Task description"`
Examples:
- `/ai-agents-test "Build a REST API with authentication"`
- `/ai-agents-test "Research best practices for React performance"`
- `/ai-agents-test "Debug this authentication error"`
# Test Process
## 1. Validate Setup
First check if the multi-agent project exists:
```bash
# Check for required files
if [ -f "index.ts" ] && [ -d "agents" ]; then
echo "✅ Multi-agent project found"
else
echo "❌ Multi-agent project not found"
echo "💡 Run /ai-agents-setup first to create the project"
exit 1
fi
```
## 2. Parse Test Query
Extract the task from user input:
- If provided: Use their task
- If empty: Use default test task
Default tasks by category:
- **Code generation**: "Build a TODO API with CRUD operations"
- **Research**: "Research microservices best practices"
- **Debug**: "Why is my JWT authentication failing?"
- **Review**: "Review this code for security issues"
## 3. Start Test Execution
Create a test runner script:
### test-runner.ts
```typescript
import { runMultiAgentTask } from './index';
interface TestMetrics {
startTime: number;
endTime?: number;
handoffs: Array<{
from: string;
to: string;
reason: string;
timestamp: number;
}>;
agentsInvolved: Set<string>;
totalDuration?: number;
}
async function testMultiAgentSystem(task: string) {
console.log('🚀 Multi-Agent System Test\n');
console.log('━'.repeat(60));
console.log(`📋 Task: ${task}`);
console.log('━'.repeat(60));
console.log('');
const metrics: TestMetrics = {
startTime: Date.now(),
handoffs: [],
agentsInvolved: new Set()
};
try {
const result = await runMultiAgentTask(task);
metrics.endTime = Date.now();
metrics.totalDuration = metrics.endTime - metrics.startTime;
// Display results
displayResults(result, metrics);
return { success: true, result, metrics };
} catch (error) {
console.error('❌ Test failed:', error);
return { success: false, error, metrics };
}
}
function displayResults(result: any, metrics: TestMetrics) {
console.log('\n' + '━'.repeat(60));
console.log('📊 Test Results');
console.log('━'.repeat(60));
console.log('');
// Success indicator
console.log('✅ Status: Task completed successfully\n');
// Metrics
console.log('⏱️ Performance Metrics:');
console.log(` Total duration: ${metrics.totalDuration}ms (${(metrics.totalDuration! / 1000).toFixed(2)}s)`);
console.log(` Handoff count: ${metrics.handoffs.length}`);
console.log(` Agents involved: ${metrics.agentsInvolved.size}`);
console.log(` Avg time per handoff: ${(metrics.totalDuration! / Math.max(metrics.handoffs.length, 1)).toFixed(0)}ms`);
console.log('');
// Agent flow
if (metrics.handoffs.length > 0) {
console.log('🔄 Agent Flow:');
const agentFlow = ['coordinator'];
metrics.handoffs.forEach(h => {
if (!agentFlow.includes(h.to)) {
agentFlow.push(h.to);
}
});
console.log(` ${agentFlow.join(' → ')}`);
console.log('');
}
// Handoff details
if (metrics.handoffs.length > 0) {
console.log('🔀 Handoff Details:');
metrics.handoffs.forEach((handoff, i) => {
const duration = i < metrics.handoffs.length - 1
? metrics.handoffs[i + 1].timestamp - handoff.timestamp
: metrics.endTime! - handoff.timestamp;
console.log(` ${i + 1}. ${handoff.from}${handoff.to}`);
console.log(` Reason: ${handoff.reason}`);
console.log(` Duration: ${duration}ms`);
console.log('');
});
}
// Output summary
console.log('📝 Output Summary:');
const output = typeof result.output === 'string' ? result.output : JSON.stringify(result.output, null, 2);
const lines = output.split('\n');
if (lines.length > 20) {
console.log(lines.slice(0, 10).join('\n'));
console.log(` ... (${lines.length - 20} more lines) ...`);
console.log(lines.slice(-10).join('\n'));
} else {
console.log(output);
}
console.log('');
// Quality assessment
console.log('🎯 Quality Assessment:');
const qualityScore = assessQuality(result, metrics);
console.log(` Overall score: ${qualityScore.score}/100`);
console.log(` Completeness: ${qualityScore.completeness}`);
console.log(` Efficiency: ${qualityScore.efficiency}`);
console.log(` Coordination: ${qualityScore.coordination}`);
console.log('');
}
function assessQuality(result: any, metrics: TestMetrics) {
let score = 100;
let completeness = '✅ Excellent';
let efficiency = '✅ Excellent';
let coordination = '✅ Excellent';
// Check completeness
const outputLength = JSON.stringify(result.output).length;
if (outputLength < 100) {
score -= 30;
completeness = '⚠️ Incomplete';
} else if (outputLength < 500) {
score -= 10;
completeness = '✅ Good';
}
// Check efficiency
const avgHandoffTime = metrics.totalDuration! / Math.max(metrics.handoffs.length, 1);
if (avgHandoffTime > 5000) {
score -= 20;
efficiency = '⚠️ Slow';
} else if (avgHandoffTime > 3000) {
score -= 10;
efficiency = '✅ Good';
}
// Check coordination
if (metrics.handoffs.length === 0) {
score -= 20;
coordination = '⚠️ No handoffs';
} else if (metrics.handoffs.length > 10) {
score -= 10;
coordination = '⚠️ Too many handoffs';
}
return {
score: Math.max(0, score),
completeness,
efficiency,
coordination
};
}
// CLI interface
const task = process.argv[2];
if (!task) {
console.error('❌ Error: Please provide a task to test');
console.log('');
console.log('Usage: ts-node test-runner.ts "Your task description"');
console.log('');
console.log('Examples:');
console.log(' ts-node test-runner.ts "Build a REST API with authentication"');
console.log(' ts-node test-runner.ts "Research React performance best practices"');
console.log('');
process.exit(1);
}
testMultiAgentSystem(task)
.then(({ success }) => {
process.exit(success ? 0 : 1);
})
.catch(error => {
console.error('Fatal error:', error);
process.exit(1);
});
```
## 4. Enhanced Orchestration with Metrics
Update `index.ts` to emit events for testing:
```typescript
export async function runMultiAgentTask(task: string, options?: {
onHandoff?: (event: HandoffEvent) => void;
onComplete?: (result: any) => void;
verbose?: boolean;
}) {
const verbose = options?.verbose ?? true;
if (verbose) {
console.log(`\n🤖 Starting multi-agent task: ${task}\n`);
}
const handoffs: Array<{
from: string;
to: string;
reason: string;
timestamp: number;
}> = [];
const result = await orchestrate({
agents,
task,
coordinator,
maxDepth: 10,
timeout: 300000,
onHandoff: (event) => {
const handoffData = {
from: event.from,
to: event.to,
reason: event.reason,
timestamp: Date.now()
};
handoffs.push(handoffData);
if (verbose) {
console.log(`\n🔄 Handoff: ${event.from}${event.to}`);
console.log(` Reason: ${event.reason}\n`);
}
options?.onHandoff?.(event);
},
onComplete: (result) => {
if (verbose) {
console.log(`\n✅ Task complete!`);
console.log(` Total handoffs: ${handoffs.length}`);
console.log(` Agents: ${new Set(handoffs.flatMap(h => [h.from, h.to])).size}\n`);
}
options?.onComplete?.(result);
}
});
return {
...result,
metrics: {
handoffs,
agentCount: new Set(handoffs.flatMap(h => [h.from, h.to])).size
}
};
}
```
## 5. Execute Test
Run the test:
```bash
# Using ts-node
ts-node test-runner.ts "Build a REST API with authentication"
# Or using npm script
npm run test:agents "Build a REST API with authentication"
```
## 6. Display Real-Time Progress
Show live updates during execution:
```
🚀 Multi-Agent System Test
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
📋 Task: Build a REST API with authentication
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
🔄 Handoff: coordinator → researcher
Reason: Need to research authentication best practices
🔄 Handoff: researcher → coder
Reason: Research complete, ready to implement
🔄 Handoff: coder → reviewer
Reason: Implementation complete, needs review
🔄 Handoff: reviewer → coordinator
Reason: Review complete, all checks passed
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
📊 Test Results
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
✅ Status: Task completed successfully
⏱️ Performance Metrics:
Total duration: 47823ms (47.82s)
Handoff count: 4
Agents involved: 4
Avg time per handoff: 11956ms
🔄 Agent Flow:
coordinator → researcher → coder → reviewer → coordinator
🔀 Handoff Details:
1. coordinator → researcher
Reason: Need to research authentication best practices
Duration: 8234ms
2. researcher → coder
Reason: Research complete, ready to implement
Duration: 23456ms
3. coder → reviewer
Reason: Implementation complete, needs review
Duration: 12389ms
4. reviewer → coordinator
Reason: Review complete, all checks passed
Duration: 3744ms
📝 Output Summary:
{
"api": "REST API with JWT authentication",
"features": [
"User registration",
"User login",
"JWT token generation",
"Protected routes",
"Token refresh"
],
"security": {
"passwordHashing": "bcrypt",
"tokenExpiry": "1h",
"refreshToken": "7d"
},
"endpoints": [
"POST /api/auth/register",
"POST /api/auth/login",
"POST /api/auth/refresh",
"GET /api/users/me (protected)"
],
"tests": "95% coverage"
}
🎯 Quality Assessment:
Overall score: 95/100
Completeness: ✅ Excellent
Efficiency: ✅ Excellent
Coordination: ✅ Excellent
```
## 7. Add Test Script to package.json
```json
{
"scripts": {
"test:agents": "ts-node test-runner.ts"
}
}
```
## 8. Create Pre-defined Test Scenarios
Create `tests/scenarios.json`:
```json
{
"scenarios": [
{
"name": "Code Generation",
"task": "Build a REST API with authentication and CRUD operations",
"expectedAgents": ["coordinator", "researcher", "coder", "reviewer"],
"expectedHandoffs": 4,
"maxDuration": 60000
},
{
"name": "Research Task",
"task": "Research best practices for microservices architecture",
"expectedAgents": ["coordinator", "researcher"],
"expectedHandoffs": 2,
"maxDuration": 20000
},
{
"name": "Debug Task",
"task": "Debug JWT authentication failing with 401 errors",
"expectedAgents": ["coordinator", "researcher", "security-auditor"],
"expectedHandoffs": 3,
"maxDuration": 30000
},
{
"name": "Complex Pipeline",
"task": "Design, implement, test, and document a payment processing API",
"expectedAgents": ["coordinator", "api-designer", "coder", "test-writer", "reviewer"],
"expectedHandoffs": 6,
"maxDuration": 120000
}
]
}
```
## 9. Troubleshooting
If test fails, check:
```bash
# 1. Environment variables
if [ -z "$ANTHROPIC_API_KEY" ]; then
echo "❌ Error: ANTHROPIC_API_KEY not set"
echo "💡 Add your API key to .env file"
exit 1
fi
# 2. Dependencies installed
if [ ! -d "node_modules/@ai-sdk-tools/agents" ]; then
echo "❌ Error: Dependencies not installed"
echo "💡 Run: npm install"
exit 1
fi
# 3. Agents registered
if ! grep -q "researcher" index.ts; then
echo "⚠️ Warning: Not all agents registered in index.ts"
fi
```
# Output Summary
After test completion, show:
```
✅ Multi-agent test complete!
📊 Results:
Status: Success
Duration: 47.8s
Agents: 4 (coordinator, researcher, coder, reviewer)
Handoffs: 4
Quality: 95/100
🎯 Assessment:
✅ All agents coordinated successfully
✅ Task completed within expected time
✅ Output quality meets standards
💡 Recommendations:
- System is functioning optimally
- Consider adding more specialized agents for complex tasks
- Average handoff time is excellent (11.9s)
📁 Full test output saved to: test-results-[timestamp].json
```
# Test Validation Criteria
A successful test should have:
- ✅ At least 2 agents involved (coordinator + 1 specialist)
- ✅ Meaningful handoffs with clear reasons
- ✅ Completion within timeout (5 minutes default)
- ✅ Quality output (not just "task complete")
- ✅ No errors or exceptions
# Performance Benchmarks
Expected performance ranges:
- **Simple tasks** (research): 10-20 seconds, 2-3 handoffs
- **Medium tasks** (code generation): 30-60 seconds, 3-5 handoffs
- **Complex tasks** (full pipeline): 60-120 seconds, 5-8 handoffs
If actual performance exceeds these by 2x, investigate:
- API rate limiting
- Model selection (use faster models for testing)
- Network latency
- Agent prompt optimization