--- title: Modern Python Modules Reference description: Comprehensive guide to high-quality, Python 3.11+ compatible modules organized by use case last_updated: "2025-10-29" python_compatibility: "3.11+" --- # Modern Python Modules Reference This reference guide covers high-quality, actively maintained Python modules that are compatible with Python 3.11+ and represent modern best practices. Each module is vetted for production use and includes guidance on when to use it. ## Quick Navigation - **[Package & Project Management](#package--project-management)** - Dependency management, packaging, and project tooling - **[CLI Development](#cli-development)** - Building command-line applications - **[Web Frameworks & APIs](#web-frameworks--apis)** - Web development and API frameworks - **[HTTP & Network](#http--network)** - HTTP clients, protocols, and networking - **[Data Processing & Analysis](#data-processing--analysis)** - Data manipulation and analysis - **[Testing & Quality](#testing--quality)** - Testing frameworks and code quality tools - **[Async & Concurrency](#async--concurrency)** - Async programming and concurrent execution - **[Type Checking & Validation](#type-checking--validation)** - Data validation and type safety - **[Configuration Management](#configuration-management)** - Config handling and secrets - **[Logging & Monitoring](#logging--monitoring)** - Logging, tracing, and observability - **[Database & ORM](#database--orm)** - Database drivers and ORM solutions - **[Data Structures & Utilities](#data-structures--utilities)** - Specialized data structures and utility functions - **[Serialization](#serialization)** - Data serialization and encoding --- ## Package & Project Management ### uv **PyPI:** `uv` | **Status:** Active | **Python:** 3.11+ Modern package manager and project tool written in Rust. Replaces pip, pip-tools, pipx, poetry, pyenv, and virtualenv with 10-100x performance improvements. **Key Features:** - Blazingly fast dependency resolution and installation - PEP 723 inline script metadata support - Single lockfile for reproducible environments - Python version management built-in - Virtual environment creation and management **When to Use:** - Managing Python projects with modern tooling - Creating portable scripts with dependencies - Building CI/CD pipelines - Replacing Poetry or pip-tools workflows **See Also:** For comprehensive uv documentation, activate the uv skill: `Skill(command: "uv")` --- ### hatch **PyPI:** `hatch` | **Status:** Active | **Python:** 3.11+ Modern build backend and project manager. Standardizes Python packaging without configuration complexity. **Key Features:** - Reproducible builds via hatch.build - Built-in test runner and environment management - Version bumping automation - Dynamic field support in pyproject.toml **When to Use:** - Building and packaging libraries - Automating version management - Standardizing project structure --- ## CLI Development ### Click **PyPI:** `click` | **Status:** Active | **Python:** 3.11+ Elegant and intuitive command-line interface creation framework. Emphasizes composability and convention over configuration. **Key Features:** - Automatic help text generation - Type hints support - Command composition and nesting - Custom parameter types - Shell completion support **When to Use:** - Building user-friendly CLI applications - Creating command-line tools with subcommands - Rapid prototyping of command-line interfaces **Related:** Typer (Type-based alternative using Pydantic) --- ### Typer **PyPI:** `typer` | **Status:** Active | **Python:** 3.11+ Modern CLI framework based on Click but using Python type hints and Pydantic for automatic parsing. **Key Features:** - Pure Python type hints (no decorators needed) - Automatic shell completion - Built-in help generation - Pydantic integration for parameter validation - Intuitive and explicit API **When to Use:** - Building type-safe CLIs - Rapid CLI development with type validation - Creating Python scripts with structured arguments **Comparison with Click:** - Typer emphasizes types and simplicity - Click is more explicit and composable - Choose Typer for rapid development, Click for complex nested commands --- ### Rich **PyPI:** `rich` | **Status:** Active | **Python:** 3.11+ Terminal rendering library for rich text and beautiful formatting in the terminal. **Key Features:** - Syntax highlighting for code - Progress bars and spinners - Formatted tables and tree displays - Markup-based text styling - Console control and automation **When to Use:** - Adding attractive output to CLI applications - Displaying progress in long-running operations - Creating formatted reports in the terminal - Building interactive terminal applications --- ### Fabric **PyPI:** `fabric` | **Status:** Active | **Python:** 3.11+ High-level API for executing shell commands remotely or locally. Built on top of Paramiko. **Key Features:** - Execute commands over SSH - Local command execution - File transfer (PUT/GET) - Configurable host lists and task runners - Context managers for clean command management **When to Use:** - Deployment automation - Remote system administration - Building deployment scripts - Task automation across multiple hosts **See Also:** [Fabric Documentation](./modern-modules/fabric.md) --- ## Web Frameworks & APIs ### FastAPI **PyPI:** `fastapi` | **Status:** Active | **Python:** 3.11+ Modern, fast web framework for building APIs with Python type hints. Built on Starlette and Pydantic. **Key Features:** - Automatic OpenAPI/Swagger documentation - Built-in dependency injection - Request validation via Pydantic models - Excellent async/await support - WebSocket support **When to Use:** - Building REST APIs - Creating high-performance web services - Building microservices with documentation - Real-time applications with WebSockets --- ### Starlette **PyPI:** `starlette` | **Status:** Active | **Python:** 3.11+ Lightweight ASGI framework for building async web applications. Foundation for FastAPI. **Key Features:** - ASGI-based async request handling - Middleware support - WebSocket support - Background tasks - Excellent testing utilities **When to Use:** - Lightweight web applications - ASGI server applications - Middleware development - When you need lower-level control than FastAPI --- ### Pydantic **PyPI:** `pydantic` | **Status:** Active | **Python:** 3.11+ Data validation library using Python type hints. Provides runtime type checking and data parsing. **Key Features:** - Runtime type validation - Automatic type coercion - JSON Schema generation - Custom validators - Serialization support **When to Use:** - API request/response validation - Configuration validation - Data pipeline validation - Creating self-documenting data models --- ## HTTP & Network ### httpx **PyPI:** `httpx` | **Status:** Active | **Python:** 3.11+ Modern HTTP client library with both sync and async support. Designed as next-generation requests replacement. **Key Features:** - Synchronous and asynchronous APIs - HTTP/1.1 and HTTP/2 support - Type annotations throughout - Default timeout behavior - ASGI/WSGI testing support **When to Use:** - Building async HTTP clients - Making HTTP requests with modern Python - Need both sync and async in one library - Testing ASGI/WSGI applications **See Also:** [httpx Deep Dive](./modern-modules/httpx.md) --- ### requests **PyPI:** `requests` | **Status:** Maintained | **Python:** 3.11+ Ubiquitous HTTP library for simple, synchronous HTTP requests. **Key Features:** - Simple, Pythonic API - Automatic redirects - Session management - Cookie handling - SSL verification **When to Use:** - Simple synchronous HTTP requests - Legacy project compatibility - When async support is not needed - Broad ecosystem compatibility **Note:** httpx is recommended for new projects requiring async support --- ### aiohttp **PyPI:** `aiohttp` | **Status:** Active | **Python:** 3.11+ Async HTTP client/server framework. Built for both client and server async HTTP operations. **Key Features:** - HTTP server and client - WebSocket support - Built-in connection pooling - Middleware support - Streaming support **When to Use:** - Async HTTP clients with server component - Building full async web services - Need built-in WebSocket server support --- ### paho-mqtt **PyPI:** `paho-mqtt` | **Status:** Active | **Python:** 3.11+ MQTT client library for IoT and message-based applications. **Key Features:** - MQTT protocol support - Synchronous and asynchronous APIs - TLS/SSL encryption - Will messages and persistence - Callbacks for event handling **When to Use:** - Building IoT applications - MQTT message publishing and subscribing - Integrating with MQTT brokers - Message-based system communication **See Also:** [paho-mqtt Documentation](./modern-modules/paho-mqtt.md) --- ## Data Processing & Analysis ### Pandas **PyPI:** `pandas` | **Status:** Active | **Python:** 3.11+ Powerful data manipulation and analysis library. Standard for data science and analytics. **Key Features:** - DataFrames for tabular data - Series for labeled 1D data - Built-in plotting and visualization integration - SQL-like operations - Time series functionality **When to Use:** - Data manipulation and cleaning - Exploratory data analysis - Building data pipelines - Working with tabular data --- ### NumPy **PyPI:** `numpy` | **Status:** Active | **Python:** 3.11+ Fundamental library for numerical computing. Foundation for scientific Python stack. **Key Features:** - N-dimensional arrays (ndarray) - Vectorized operations - Linear algebra operations - Random number generation - FFT capabilities **When to Use:** - Numerical computations - Scientific and mathematical operations - Foundation for other data science libraries - Array-based data processing --- ### Polars **PyPI:** `polars` | **Status:** Active | **Python:** 3.11+ Fast DataFrame library written in Rust with Python bindings. Modern alternative to Pandas for large datasets. **Key Features:** - High-performance execution - Lazy evaluation support - Memory efficient - Comprehensive expression API - Out-of-core processing **When to Use:** - Large dataset processing - Performance-critical data pipelines - New projects prioritizing speed - Memory-constrained environments --- ### DuckDB **PyPI:** `duckdb` | **Status:** Active | **Python:** 3.11+ In-process SQL database engine optimized for analytics workloads. **Key Features:** - SQL queries on data files - Parquet, CSV, and other format support - Excellent query performance - Easy Python integration - No server required **When to Use:** - Analytical SQL queries on files - Data exploration with SQL - In-process data warehousing - Replacing complex pandas operations --- ## Testing & Quality ### pytest **PyPI:** `pytest` | **Status:** Active | **Python:** 3.11+ Mature testing framework with powerful fixtures and plugin system. **Key Features:** - Simple test function syntax - Powerful fixtures for test setup - Parametrization for multiple test cases - Excellent assertion introspection - Rich plugin ecosystem **When to Use:** - Writing unit and integration tests - Any Python project testing - Standard test framework for projects --- ### pytest-cov **PyPI:** `pytest-cov` | **Status:** Active | **Python:** 3.11+ Code coverage measurement plugin for pytest. **Key Features:** - Coverage reporting with pytest - HTML coverage reports - Coverage thresholds - Multiple report formats **When to Use:** - Measuring test coverage - Enforcing minimum coverage requirements - Identifying untested code --- ### Coverage **PyPI:** `coverage` | **Status:** Active | **Python:** 3.11+ Code coverage measurement and reporting tool. **Key Features:** - Statement and branch coverage - HTML and XML reports - Coverage API for custom reporting - Configuration file support **When to Use:** - Understanding code coverage - CI/CD coverage validation - Code quality metrics --- ### mypy **PyPI:** `mypy` | **Status:** Active | **Python:** 3.11+ Static type checker for Python. Verifies type hints without running code. **Key Features:** - Type hint verification - Plugin system - Incremental checking - Multiple strictness levels - Good error messages **When to Use:** - Type-checking Python code - Catching type errors before runtime - Enforcing type safety in projects - Large codebase maintenance --- ### Ruff **PyPI:** `ruff` | **Status:** Active | **Python:** 3.11+ Fast Python linter written in Rust. Combines flake8, isort, and other tools. **Key Features:** - Extreme speed (50-100x faster than flake8) - Multiple rule sets - Automatic fixing - Isort-compatible import sorting - Minimal configuration **When to Use:** - Linting Python code - Replacing flake8, pylint, or isort - CI/CD pipelines - Code quality gates --- ### Black **PyPI:** `black` | **Status:** Active | **Python:** 3.11+ Uncompromising code formatter. Enforces consistent style without configuration. **Key Features:** - Deterministic formatting - Minimal configuration (intentional) - AST-based (preserves semantics) - Fast formatting - Stable formatting output **When to Use:** - Enforcing code style - Automatic code formatting - Team collaboration (standardized style) - CI/CD integration --- ### Hypothesis **PyPI:** `hypothesis` | **Status:** Active | **Python:** 3.11+ Property-based testing framework. Generates test cases automatically. **Key Features:** - Property-based testing - Automatic example generation - Database of failing cases - Integrated with pytest - Profile systems for custom generation **When to Use:** - Property-based testing - Testing invariants and properties - Finding edge cases - Fuzzing and robustness testing --- ## Async & Concurrency ### asyncio **PyPI:** Built-in stdlib | **Status:** Maintained | **Python:** 3.11+ Standard library for asynchronous I/O and concurrent programming. **Key Features:** - Coroutines and tasks - Event loop - Futures for deferred results - Synchronization primitives - Subprocess support **When to Use:** - Any asynchronous Python code - Built-in, no installation needed - Building async applications - Concurrent I/O operations --- ### Trio **PyPI:** `trio` | **Status:** Active | **Python:** 3.11+ Friendly async library with better structured concurrency patterns. **Key Features:** - Structured concurrency (async with blocks) - Better cancellation semantics - Excellent debugging support - Built-in testing utilities - Simpler mental model than asyncio **When to Use:** - Complex async programs - Structured concurrency patterns - Better error handling in concurrent code - Async testing --- ### uvloop **PyPI:** `uvloop` | **Status:** Active | **Python:** 3.11+ Drop-in replacement for asyncio event loop, written in Cython for performance. **Key Features:** - 2-4x faster than default asyncio - Drop-in replacement (single import) - Works with all asyncio code - libuv-based implementation - Minimal overhead **When to Use:** - Performance-critical async applications - Deploying async applications - Speeding up existing asyncio code **See Also:** [uvloop Documentation](./modern-modules/uvloop.md) --- ### APScheduler **PyPI:** `apscheduler` | **Status:** Active | **Python:** 3.11+ Advanced Python Scheduler for task scheduling and automation. **Key Features:** - Cron-like scheduling - Fixed interval scheduling - One-off job scheduling - Persistent job storage - Multiple scheduler backends **When to Use:** - Scheduling recurring tasks - Background job execution - Cron-like task automation - Building task queues --- ## Type Checking & Validation ### Pydantic **PyPI:** `pydantic` | **Status:** Active | **Python:** 3.11+ See [Web Frameworks & APIs](#web-frameworks--apis) section above. --- ### attrs **PyPI:** `attrs` | **Status:** Active | **Python:** 3.11+ Class definition library with minimal boilerplate, validators, and converters. **Key Features:** - Automatic dunder methods (`__init__`, `__repr__`, `__eq__`) - Built-in validators and converters - Slot-based classes for performance - Frozen (immutable) classes - Field transformers for extensibility **When to Use:** - Defining data classes with validation - Creating immutable data structures - Building domain models - Performance-critical class definitions **See Also:** [attrs Documentation](./modern-modules/attrs.md) --- ### dataclasses **PyPI:** Built-in stdlib | **Status:** Maintained | **Python:** 3.11+ Standard library for data classes with automatic dunder methods. **Key Features:** - Decorator-based class definition - Automatic special methods - Field configuration - Slots support (Python 3.10+) - Frozen classes **When to Use:** - Simple data container classes - Zero external dependencies - Built-in Python solution - Python 3.10+ projects --- ### marshmallow **PyPI:** `marshmallow` | **Status:** Active | **Python:** 3.11+ Object serialization/deserialization and data validation library. **Key Features:** - Field-based schema definition - Serialization and deserialization - Data validation - Nested object support - Extensive customization **When to Use:** - Data serialization and validation - API request/response handling - Legacy codebases - Complex object mapping --- ## Configuration Management ### python-dotenv **PyPI:** `python-dotenv` | **Status:** Active | **Python:** 3.11+ Load environment variables from .env files. **Key Features:** - Simple .env file parsing - Environment variable injection - Override control - Interpolation support - Path helpers **When to Use:** - Development environment setup - Managing secrets and configuration - Separating config from code - Local development workflows **See Also:** [python-dotenv Documentation](./modern-modules/python-dotenv.md) --- ### python-decouple **PyPI:** `python-decouple` | **Status:** Active | **Python:** 3.11+ Simple library to separate configuration from code. **Key Features:** - Environment variable parsing - Type casting (int, bool, list) - Default value support - Search order: env file, system env, defaults - Minimal configuration **When to Use:** - Configuration management - 12-factor app principles - Simple environment variable handling --- ### dynaconf **PyPI:** `dynaconf` | **Status:** Active | **Python:** 3.11+ Configuration management system supporting multiple formats and environments. **Key Features:** - YAML, TOML, JSON configuration - Environment variable override - Settings object with dot notation - Multiple environments - Validation support **When to Use:** - Complex configuration systems - Multi-environment projects - Configuration file management - Settings management across environments --- ## Logging & Monitoring ### structlog **PyPI:** `structlog` | **Status:** Active | **Python:** 3.11+ Structured logging library for adding context to log entries. **Key Features:** - Structured (JSON) logging - Context preservation - Processor pipelines - Multiple output formats - Integration with standard logging **When to Use:** - Building production systems - Machine-readable log analysis - Context propagation across function calls - Structured logging infrastructure --- ### loguru **PyPI:** `loguru` | **Status:** Active | **Python:** 3.11+ Simpler logging library with modern features and convenient API. **Key Features:** - Single logger instance - Automatic file rotation - Formatting with braces syntax - Color output by default - Exception formatting **When to Use:** - Simple logging setup - Single-file modules - Automatic formatting and rotation - Convenient logging API --- ### OpenTelemetry **PyPI:** `opentelemetry-api` | **Status:** Active | **Python:** 3.11+ Open standard for observability (metrics, traces, logs). **Key Features:** - Distributed tracing - Metrics collection - Log correlation - Multiple exporter support - Vendor-agnostic **When to Use:** - Distributed systems tracing - Observability infrastructure - Multi-service applications - Monitoring and debugging --- ## Database & ORM ### SQLAlchemy **PyPI:** `sqlalchemy` | **Status:** Active | **Python:** 3.11+ Most mature and feature-rich Python ORM and SQL toolkit. **Key Features:** - ORM for object-relational mapping - Core expression language for queries - Multiple database support - Async support (SQLAlchemy 2.0+) - Extensive customization **When to Use:** - Complex database applications - Need ORM with full features - Multiple database backend support - Well-established projects --- ### Tortoise ORM **PyPI:** `tortoise-orm` | **Status:** Active | **Python:** 3.11+ Async-first ORM inspired by Django ORM. **Key Features:** - Async/await native - Django ORM-like API - Multiple database support - Migrations - Validation **When to Use:** - Async applications - FastAPI projects - Django ORM-like experience with async - Modern async web applications --- ### Peewee **PyPI:** `peewee` | **Status:** Active | **Python:** 3.11+ Simple and small ORM for lightweight database interactions. **Key Features:** - Lightweight and simple API - SQLite, PostgreSQL, MySQL support - Query builder - Migrations - Expression-based querying **When to Use:** - Simple database applications - Lightweight projects - SQLite applications - Learning ORM concepts --- ### asyncpg **PyPI:** `asyncpg` | **Status:** Active | **Python:** 3.11+ Fast PostgreSQL database driver for asyncio. **Key Features:** - High performance (fastest Python PostgreSQL driver) - Async/await support - Native JSON support - Connection pooling - Streaming support **When to Use:** - PostgreSQL with async code - High-performance database access - FastAPI/Starlette applications - Large-scale async applications --- ## Data Structures & Utilities ### attrs **PyPI:** `attrs` | **Status:** Active | **Python:** 3.11+ See [Type Checking & Validation](#type-checking--validation) section above. --- ### bidict **PyPI:** `bidict` | **Status:** Active | **Python:** 3.11+ Bidirectional dictionary supporting fast forward and reverse lookups. **Key Features:** - Bidirectional mapping - Inverse access - One-to-one mapping enforcement - Immutable variants **When to Use:** - Bidirectional mappings - ID-to-name relationships - Reverse lookups required - Enum-like behavior **See Also:** [bidict Documentation](./modern-modules/bidict.md) --- ### boltons **PyPI:** `boltons` | **Status:** Active | **Python:** 3.11+ Set of utility functions for common programming tasks. **Key Features:** - Iteration utilities - Dictionary utilities - List utilities - Table-like data structures - Caching decorators **When to Use:** - Common utility operations - Functional programming tools - Extending standard library - Utility collections **See Also:** [boltons Documentation](./modern-modules/boltons.md) --- ### python-diskcache **PyPI:** `diskcache` | **Status:** Active | **Python:** 3.11+ Persistent disk-based dictionary-like cache for large datasets. **Key Features:** - Disk-based caching - Dictionary interface - LRU eviction - Transactional semantics - Compression support **When to Use:** - Caching large datasets - Disk-persistent cache - Building caches that survive restarts - Replacing Redis for simple cases **See Also:** [python-diskcache Documentation](./modern-modules/python-diskcache.md) --- ### Box **PyPI:** `python-box` | **Status:** Active | **Python:** 3.11+ Dictionary with attribute-style access (dot notation). **Key Features:** - Attribute access to dictionary items - Nested access support - Configuration object pattern - JSON export - Validation integration **When to Use:** - Configuration objects - Cleaner dictionary access syntax - Nested data access - Configuration management **See Also:** [Box Documentation](./modern-modules/box.md) --- ### blinker **PyPI:** `blinker` | **Status:** Active | **Python:** 3.11+ Signal (event) dispatching library for loose coupling. **Key Features:** - Signal/event dispatching - Multiple listener support - Weak references for cleanup - Sender-based filtering - Minimal dependencies **When to Use:** - Event-driven architecture - Plugin systems - Loose coupling between components - Application signaling **See Also:** [blinker Documentation](./modern-modules/blinker.md) --- ## Serialization ### orjson **PyPI:** `orjson` | **Status:** Active | **Python:** 3.11+ Fast JSON serialization library written in Rust. **Key Features:** - 10x faster than standard json - Drop-in json replacement - Native datetime serialization - Supports numpy arrays - Minimal dependencies **When to Use:** - High-performance JSON encoding - Serializing numpy/pandas data - Drop-in replacement for json - Performance-critical serialization --- ### msgpack **PyPI:** `msgpack` | **Status:** Active | **Python:** 3.11+ Binary serialization format for fast data interchange. **Key Features:** - Compact binary format - Fast serialization/deserialization - Support for various types - Timestamp support - Streaming support **When to Use:** - Binary message protocols - High-performance serialization - Network protocols - RPC systems --- ### cattrs **PyPI:** `cattrs` | **Status:** Active | **Python:** 3.11+ Custom class converters for attrs/dataclasses serialization. **Key Features:** - Serialization/deserialization - Works with attrs and dataclasses - Custom converters - Nested structure support - Structural polymorphism **When to Use:** - Converting attrs/dataclass to dictionaries - Serializing complex structures - attrs ecosystem serialization --- ## Templates & Code Generation ### Copier **PyPI:** `copier` | **Status:** Active | **Python:** 3.11+ Project templating and scaffolding tool. **Key Features:** - Template-based project generation - Question prompts during generation - Relative path handling - Pre-commit hooks - Multi-layer templates **When to Use:** - Project scaffolding - Template-based project generation - Reproducible project structures - Creating new projects **See Also:** [Copier Documentation](./modern-modules/copier.md) --- ### Jinja2 **PyPI:** `jinja2` | **Status:** Active | **Python:** 3.11+ Powerful templating engine for dynamic text generation. **Key Features:** - Template syntax with variables and filters - Control flow (if/for/while) - Custom filters and globals - Template inheritance - Auto-escaping **When to Use:** - HTML/template generation - Code generation - Dynamic document creation - Report generation --- ## Automation & Deployment ### GitPython **PyPI:** `GitPython` | **Status:** Active | **Python:** 3.11+ Python library for interacting with Git repositories. **Key Features:** - Repository operations - Commit/branch management - Remote operations - Blame and history - Config management **When to Use:** - Git integration in Python - Automation with Git - Repository analysis - Deployment scripts **See Also:** [GitPython Documentation](./modern-modules/GitPython.md) --- ### Fabric **PyPI:** `fabric` | **Status:** Active | **Python:** 3.11+ See [CLI Development](#cli-development) section above. --- ### Prefect **PyPI:** `prefect` | **Status:** Active | **Python:** 3.11+ Workflow orchestration and task scheduling platform. **Key Features:** - Task-based workflow definition - Built-in retry and error handling - Flow visualization - Caching and result persistence - API for monitoring **When to Use:** - Complex workflow orchestration - Data pipeline management - Task scheduling and execution - Production workflow management **See Also:** [Prefect Documentation](./modern-modules/prefect.md) --- ## Testing & Automation Frameworks ### Robot Framework **PyPI:** `robotframework` | **Status:** Active | **Python:** 3.11+ Automation and testing framework with keyword-driven syntax. **Key Features:** - Keyword-driven testing - Built-in libraries - Custom library support - Tabular data syntax - HTML reports **When to Use:** - Acceptance testing - Robotic process automation - Non-technical test authoring - End-to-end testing **See Also:** [Robot Framework Documentation](./modern-modules/robotframework.md) --- ### Shiv **PyPI:** `shiv` | **Status:** Active | **Python:** 3.11+ Command line utility to create self-contained zip applications. **Key Features:** - Creates executable Python applications - Bundles dependencies - Standalone distribution - ZIP-based Python packages - Single file distribution **When to Use:** - Distributing Python applications - Creating standalone executables - Shipping without pip - Simple application distribution **See Also:** [Shiv Documentation](./modern-modules/shiv.md) --- ### arrow **PyPI:** `arrow` | **Status:** Active | **Python:** 3.11+ Friendlier datetime and timezone handling library. **Key Features:** - Human-friendly datetime API - Timezone support - Parsing and formatting - Timezone conversion - Relative time operations **When to Use:** - Datetime handling - Timezone management - Human-readable time formatting - Datetime parsing **See Also:** [Arrow Documentation](./modern-modules/arrow.md) --- ## Guide Structure Each module typically includes: 1. **Overview** - What the module does and why it's useful 2. **Official Information** - Links, version, maintenance status 3. **Python Compatibility** - Supported Python versions 4. **Installation** - How to install (with uv recommended) 5. **Core Concepts** - Key ideas and patterns 6. **Usage Examples** - Practical code examples 7. **When to Use** - Decision guidance 8. **Alternatives** - Competing or complementary modules 9. **Integration Patterns** - How to use with other tools 10. **Common Gotchas** - Pitfalls and edge cases ## How to Navigate This Reference ### By Use Case Start with the category that matches your need, then read the module descriptions. ### By Python Version All modules listed are Python 3.11+ compatible. Check individual module references for exact version support. ### By Integration Many modules work together (e.g., FastAPI + Pydantic, attrs + cattrs). Look for "See Also" and "Integration Patterns" sections. ### By Performance For performance-critical code: - **Serialization:** orjson, msgpack - **Async I/O:** uvloop, httpx - **Data processing:** Polars, DuckDB - **Linting:** Ruff - **Package management:** uv ## Installation Pattern Install modules using uv (recommended) or pip: ```bash # With uv uv add module-name # With pip (if uv not available) pip install module-name ``` ## Research Methodology All modules in this reference are verified to be: - Actively maintained (recent commits) - Python 3.11+ compatible - Production-ready - Widely used in industry Module information is gathered from: - Official repositories and documentation - PyPI package pages - Community usage patterns - Real-world project implementations --- **Last Updated:** October 29, 2025 **Python Compatibility:** 3.11+ **Total Modules Covered:** 50+ For module-specific deep dives, see individual reference files in `modern-modules/`.