Initial commit
This commit is contained in:
661
skills/dataform-engineering-fundamentals.md
Normal file
661
skills/dataform-engineering-fundamentals.md
Normal file
@@ -0,0 +1,661 @@
|
||||
---
|
||||
name: dataform-engineering-fundamentals
|
||||
description: Use when developing BigQuery Dataform transformations, SQLX files, source declarations, or troubleshooting pipelines - enforces TDD workflow (tests first), ALWAYS use ${ref()} never hardcoded table paths, comprehensive columns:{} documentation, safety practices (--schema-suffix dev, --dry-run), proper ref() syntax, .sqlx for new declarations, no schema config in operations/tests, and architecture patterns that prevent technical debt under time pressure
|
||||
---
|
||||
|
||||
# Dataform Engineering Fundamentals
|
||||
|
||||
## Overview
|
||||
|
||||
**Core principle**: Safety practices and proper architecture are NEVER optional in Dataform development, regardless of time pressure or business urgency.
|
||||
|
||||
**REQUIRED FOUNDATION:** This skill builds upon superpowers:test-driven-development. All TDD principles from that skill apply to Dataform development. This skill adapts TDD specifically for BigQuery Dataform SQLX files.
|
||||
|
||||
**Official Documentation:** For Dataform syntax, configuration options, and API reference, see https://cloud.google.com/dataform/docs
|
||||
|
||||
**Best Practices Guide:** For repository structure, naming conventions, and managing large workflows, see https://cloud.google.com/dataform/docs/best-practices-repositories
|
||||
|
||||
Time pressure does not justify skipping safety checks or creating technical debt. The time "saved" by shortcuts gets multiplied into hours of debugging, broken dependencies, and production issues.
|
||||
|
||||
## When to Use
|
||||
|
||||
Use this skill for ANY Dataform work:
|
||||
- Creating new SQLX transformations
|
||||
- Modifying existing tables
|
||||
- Adding data sources
|
||||
- Troubleshooting pipeline failures
|
||||
- "Quick" reports or ad-hoc analysis
|
||||
|
||||
**Especially** use when:
|
||||
- Under time pressure or deadlines
|
||||
- Stakeholders are waiting
|
||||
- Working late at night (exhausted)
|
||||
- Tempted to "just make it work"
|
||||
|
||||
**Related Skills**:
|
||||
- **Before designing new features**: Use superpowers:brainstorming to refine requirements into clear designs before writing any code
|
||||
- **When troubleshooting failures**: Use superpowers:systematic-debugging for structured problem-solving
|
||||
- **When debugging complex issues**: Use superpowers:root-cause-tracing to trace errors back to their source
|
||||
- **When writing documentation, commit messages, or any prose**: Use elements-of-style:writing-clearly-and-concisely to apply Strunk's timeless writing rules for clarity and conciseness
|
||||
|
||||
## Non-Negotiable Safety Practices
|
||||
|
||||
These are ALWAYS required. No exceptions for deadlines, urgency, or "simple" tasks:
|
||||
|
||||
### 1. Always Use `--schema-suffix dev` for Testing
|
||||
|
||||
```bash
|
||||
# WRONG: Testing in production
|
||||
dataform run --actions my_table
|
||||
|
||||
# CORRECT: Test in dev first
|
||||
dataform run --schema-suffix dev --actions my_table
|
||||
```
|
||||
|
||||
**Why**: Writes to `schema_dev.my_table` instead of `schema_prod.my_table` (or adds `_dev` suffix based on your configuration). Allows safe testing without impacting production data or dashboards.
|
||||
|
||||
### 2. Always Use `--dry-run` Before Execution
|
||||
|
||||
```bash
|
||||
# Check compilation
|
||||
dataform compile
|
||||
|
||||
# Validate SQL without executing
|
||||
dataform run --schema-suffix dev --dry-run --actions my_table
|
||||
|
||||
# Only then execute
|
||||
dataform run --schema-suffix dev --actions my_table
|
||||
```
|
||||
|
||||
**Why**: Catches SQL errors, missing dependencies, and cost estimation before using BigQuery slots.
|
||||
|
||||
### 3. Source Declarations Before ref()
|
||||
|
||||
**WRONG**: Using tables without source declarations
|
||||
```sql
|
||||
-- This will break dependency tracking
|
||||
FROM `project_id.external_schema.table_name`
|
||||
```
|
||||
|
||||
**CORRECT**: Create source declaration first
|
||||
```sql
|
||||
-- definitions/sources/external_system/table_name.sqlx
|
||||
config {
|
||||
type: "declaration",
|
||||
database: "project_id",
|
||||
schema: "external_schema",
|
||||
name: "table_name"
|
||||
}
|
||||
|
||||
-- Then reference it
|
||||
FROM ${ref("table_name")}
|
||||
```
|
||||
|
||||
### 4. ALWAYS Use ${ref()} - NEVER Hardcoded Table Paths
|
||||
|
||||
**WRONG**: Hardcoded table paths
|
||||
```sql
|
||||
-- NEVER do this
|
||||
FROM `project.external_schema.table_name`
|
||||
FROM `project.reporting_schema.customer_metrics`
|
||||
SELECT * FROM project.source_schema.customers
|
||||
```
|
||||
|
||||
**CORRECT**: Always use ${ref()}
|
||||
```sql
|
||||
-- Create source declaration first, then reference
|
||||
FROM ${ref("table_name")}
|
||||
FROM ${ref("customer_metrics")}
|
||||
SELECT * FROM ${ref("customers")}
|
||||
```
|
||||
|
||||
**Why**:
|
||||
- Dataform tracks dependencies automatically with ref()
|
||||
- Hardcoded paths break dependency graphs
|
||||
- ref() enables --schema-suffix to work correctly
|
||||
- Refactoring is easier when references are managed
|
||||
|
||||
**Exception**: None. There is NO valid reason to use hardcoded table paths in SQLX files.
|
||||
|
||||
### 5. Proper ref() Syntax
|
||||
|
||||
**WRONG**: Including schema in ref() unnecessarily
|
||||
```sql
|
||||
FROM ${ref("external_schema", "sales_order")}
|
||||
```
|
||||
|
||||
**CORRECT**: Use single argument when source declared
|
||||
```sql
|
||||
FROM ${ref("sales_order")}
|
||||
```
|
||||
|
||||
**When to use two-argument ref()**:
|
||||
- Source declarations that haven't been imported yet
|
||||
- Special schema architectures where schema suffix behavior needs explicit control
|
||||
- Cross-database references in multi-project setups
|
||||
|
||||
**Why**:
|
||||
- Single-argument ref() works for most tables
|
||||
- Dataform resolves the full path from source declarations
|
||||
- Two-argument form is only needed for special cases
|
||||
|
||||
### 6. Basic Validation Queries
|
||||
|
||||
Always verify your output:
|
||||
```bash
|
||||
# Check row counts
|
||||
bq query --use_legacy_sql=false \
|
||||
"SELECT COUNT(*) FROM \`project.schema_dev.my_table\`"
|
||||
|
||||
# Check for nulls in critical fields
|
||||
bq query --use_legacy_sql=false \
|
||||
"SELECT COUNT(*) FROM \`project.schema_dev.my_table\`
|
||||
WHERE key_field IS NULL"
|
||||
```
|
||||
|
||||
**Why**: Catches silent failures (empty tables, null values, bad joins) immediately.
|
||||
|
||||
## Architecture Patterns (Not Optional)
|
||||
|
||||
Even for "quick" work, follow these patterns:
|
||||
|
||||
**Reference:** For detailed guidance on repository structure, naming conventions, and managing large workflows, see https://cloud.google.com/dataform/docs/best-practices-repositories
|
||||
|
||||
### Layered Structure
|
||||
|
||||
```
|
||||
definitions/
|
||||
sources/ # External data declarations
|
||||
intermediate/ # Transformations and business logic
|
||||
output/ # Final tables for consumption
|
||||
reports/ # Reporting tables
|
||||
marts/ # Data marts for specific use cases
|
||||
```
|
||||
|
||||
**Don't**: Create monolithic queries directly in output layer
|
||||
|
||||
**Do**: Break into intermediate steps for reusability and testing
|
||||
|
||||
### Incremental vs Full Refresh
|
||||
|
||||
```sql
|
||||
config {
|
||||
type: "incremental",
|
||||
uniqueKey: "order_id",
|
||||
bigquery: {
|
||||
partitionBy: "DATE(order_date)",
|
||||
clusterBy: ["customer_id", "product_id"]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**When to use incremental**: Tables that grow daily (events, transactions, logs)
|
||||
|
||||
**When to use full refresh**: Small dimension tables, aggregations with lookback windows
|
||||
|
||||
### Dataform Assertions
|
||||
|
||||
```sql
|
||||
config {
|
||||
type: "table",
|
||||
assertions: {
|
||||
uniqueKey: ["call_id"],
|
||||
nonNull: ["customer_phone_number", "start_time"],
|
||||
rowConditions: ["duration >= 0"]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Why**: Catches data quality issues automatically during pipeline runs.
|
||||
|
||||
### Source Declarations: Prefer .sqlx Files
|
||||
|
||||
**STRONGLY PREFER**: .sqlx files for ALL new declarations
|
||||
```sql
|
||||
-- definitions/sources/external_system/table_name.sqlx
|
||||
config {
|
||||
type: "declaration",
|
||||
database: "project_id",
|
||||
schema: "external_schema",
|
||||
name: "table_name",
|
||||
columns: {
|
||||
id: "Unique identifier for records",
|
||||
// ... more columns
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**ACCEPTABLE (legacy only)**: .js files for existing declarations
|
||||
```javascript
|
||||
// definitions/sources/legacy_declarations.js (existing file)
|
||||
declare({
|
||||
database: "project_id",
|
||||
schema: "source_schema",
|
||||
name: "customers"
|
||||
});
|
||||
```
|
||||
|
||||
**Rule**: ALL NEW source declarations MUST be .sqlx files. Existing .js declarations can remain but should be migrated to .sqlx when modifying them.
|
||||
|
||||
**Why**: .sqlx files support column documentation, are more maintainable, and integrate better with Dataform's dependency tracking.
|
||||
|
||||
### Schema Configuration Rules
|
||||
|
||||
**Operations**: Files in `definitions/operations/` should NOT include `schema:` config
|
||||
```sql
|
||||
-- CORRECT
|
||||
config {
|
||||
type: "operations",
|
||||
tags: ["daily"]
|
||||
}
|
||||
|
||||
-- WRONG
|
||||
config {
|
||||
type: "operations",
|
||||
schema: "dataform", // DON'T specify schema
|
||||
tags: ["daily"]
|
||||
}
|
||||
```
|
||||
|
||||
**Tests/Assertions**: Files in `definitions/test/` should NOT include `schema:` config
|
||||
```sql
|
||||
-- CORRECT
|
||||
config {
|
||||
type: "assertion",
|
||||
description: "Check for duplicates"
|
||||
}
|
||||
|
||||
-- WRONG
|
||||
config {
|
||||
type: "assertion",
|
||||
schema: "dataform_assertions", // DON'T specify schema
|
||||
description: "Check for duplicates"
|
||||
}
|
||||
```
|
||||
|
||||
**Why**: Operations live in the default `dataform` schema and assertions live in `dataform_assertions` schema (configured in `workflow_settings.yaml`). Specifying schema explicitly can cause conflicts.
|
||||
|
||||
## Documentation Standards (Non-Negotiable)
|
||||
|
||||
All tables with `type: "table"` MUST include comprehensive `columns: {}` documentation in the config block.
|
||||
|
||||
**Writing Clear Documentation**: When writing column descriptions, commit messages, or any prose that humans will read, use elements-of-style:writing-clearly-and-concisely to ensure clarity and conciseness.
|
||||
|
||||
### columns: {} Requirement
|
||||
|
||||
**WRONG**: Table without column documentation
|
||||
```sql
|
||||
config {
|
||||
type: "table",
|
||||
schema: "reporting"
|
||||
}
|
||||
|
||||
SELECT customer_id, total_revenue FROM ${ref("orders")}
|
||||
```
|
||||
|
||||
**CORRECT**: Complete column documentation
|
||||
```sql
|
||||
config {
|
||||
type: "table",
|
||||
schema: "reporting",
|
||||
columns: {
|
||||
customer_id: "Unique customer identifier from source system",
|
||||
total_revenue: "Sum of all order amounts in USD, excluding refunds"
|
||||
}
|
||||
}
|
||||
|
||||
SELECT customer_id, total_revenue FROM ${ref("orders")}
|
||||
```
|
||||
|
||||
### Where to Get Column Descriptions
|
||||
|
||||
Column descriptions should be derived from:
|
||||
|
||||
1. **Source Declarations**: Copy descriptions from upstream source tables
|
||||
2. **Third-party Documentation**: Use official API documentation for external systems (CRM, ERP, analytics platforms)
|
||||
3. **Business Logic**: Document calculated fields, transformations, and business rules
|
||||
4. **BI Tool Requirements**: Include context that dashboard builders and analysts need
|
||||
5. **Dataform Documentation**: Reference https://cloud.google.com/dataform/docs for Dataform-specific configuration and built-in functions
|
||||
|
||||
**Example with ERP source documentation**:
|
||||
```sql
|
||||
config {
|
||||
type: "table",
|
||||
schema: "reporting",
|
||||
columns: {
|
||||
customer_id: "Unique customer identifier from ERP system",
|
||||
customer_name: "Customer legal business name",
|
||||
account_group: "Customer classification code for account management",
|
||||
credit_limit: "Maximum allowed credit in USD"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Source Declarations Should Include columns: {}
|
||||
|
||||
When applicable, source declarations should also document columns:
|
||||
|
||||
```sql
|
||||
-- definitions/sources/external_api/events.sqlx
|
||||
config {
|
||||
type: "declaration",
|
||||
database: "project_id",
|
||||
schema: "external_api",
|
||||
name: "events",
|
||||
description: "Event records from external API with enriched data",
|
||||
columns: {
|
||||
event_id: "Unique event identifier from API",
|
||||
user_id: "User identifier who triggered the event",
|
||||
event_type: "Type of event (click, view, purchase, etc.)",
|
||||
timestamp: "UTC timestamp when event occurred",
|
||||
properties: "JSON object containing event-specific properties"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Why document sources**: Downstream tables inherit and extend these descriptions, creating documentation consistency across the pipeline.
|
||||
|
||||
## Test-Driven Development (TDD) Workflow
|
||||
|
||||
**REQUIRED BACKGROUND:** You MUST understand and follow superpowers:test-driven-development
|
||||
|
||||
**BEFORE TDD:** When creating NEW features with unclear requirements, use superpowers:brainstorming FIRST to refine rough ideas into clear designs. Only start TDD once you have a clear understanding of what needs to be built.
|
||||
|
||||
When creating NEW features or tables in Dataform, apply the TDD cycle:
|
||||
|
||||
1. **RED**: Write tests first, watch them fail
|
||||
2. **GREEN**: Write minimal code to make tests pass
|
||||
3. **REFACTOR**: Clean up while keeping tests passing
|
||||
|
||||
The superpowers:test-driven-development skill provides the foundational TDD principles. This section adapts those principles specifically for Dataform tables and SQLX files.
|
||||
|
||||
### TDD for Dataform Tables
|
||||
|
||||
**WRONG: Implementation-first approach**
|
||||
```
|
||||
1. Write SQLX transformation
|
||||
2. Test manually with bq query
|
||||
3. "It works, ship it"
|
||||
```
|
||||
|
||||
**CORRECT: Test-first approach**
|
||||
```
|
||||
1. Write data quality assertions first
|
||||
2. Write unit tests for business logic
|
||||
3. Run tests - they should FAIL (table doesn't exist yet)
|
||||
4. Write SQLX transformation
|
||||
5. Run tests - they should PASS
|
||||
6. Refactor transformation if needed
|
||||
```
|
||||
|
||||
### Example TDD Workflow
|
||||
|
||||
**Step 1: Write assertions first** (definitions/assertions/assert_customer_metrics.sqlx)
|
||||
```sql
|
||||
config {
|
||||
type: "assertion",
|
||||
description: "Customer metrics must have valid data"
|
||||
}
|
||||
|
||||
-- This WILL fail initially (table doesn't exist)
|
||||
SELECT 'Duplicate customer_id' AS test
|
||||
FROM ${ref("customer_metrics")}
|
||||
GROUP BY customer_id
|
||||
HAVING COUNT(*) > 1
|
||||
|
||||
UNION ALL
|
||||
|
||||
SELECT 'Negative lifetime value' AS test
|
||||
FROM ${ref("customer_metrics")}
|
||||
WHERE lifetime_value < 0
|
||||
```
|
||||
|
||||
**Step 2: Run tests - watch them fail**
|
||||
```bash
|
||||
dataform run --schema-suffix dev --run-tests --actions assert_customer_metrics
|
||||
# ERROR: Table customer_metrics does not exist ✓ EXPECTED
|
||||
```
|
||||
|
||||
**Step 3: Write minimal implementation** (definitions/output/reports/customer_metrics.sqlx)
|
||||
```sql
|
||||
config {
|
||||
type: "table",
|
||||
schema: "reporting",
|
||||
columns: {
|
||||
customer_id: "Unique customer identifier",
|
||||
lifetime_value: "Total revenue from customer in USD"
|
||||
}
|
||||
}
|
||||
|
||||
SELECT
|
||||
customer_id,
|
||||
SUM(order_total) AS lifetime_value
|
||||
FROM ${ref("orders")}
|
||||
GROUP BY customer_id
|
||||
```
|
||||
|
||||
**Step 4: Run tests - watch them pass**
|
||||
```bash
|
||||
dataform run --schema-suffix dev --actions customer_metrics
|
||||
dataform run --schema-suffix dev --run-tests --actions assert_customer_metrics
|
||||
# No rows returned ✓ TESTS PASS
|
||||
```
|
||||
|
||||
### Why TDD Matters in Dataform
|
||||
|
||||
- **Catches bugs before production**: Tests fail when logic is wrong
|
||||
- **Documents expected behavior**: Tests show what the table should do
|
||||
- **Prevents regressions**: Future changes won't break existing logic
|
||||
- **Faster debugging**: Test failures pinpoint exact issues
|
||||
- **Confidence in refactoring**: Change code safely with test coverage
|
||||
|
||||
### TDD Red Flags
|
||||
|
||||
If you're thinking:
|
||||
- "I'll write tests after the implementation" → **NO, write tests FIRST**
|
||||
- "Tests are overkill for this simple table" → **NO, simple tables break too**
|
||||
- "I'll test manually with bq query" → **NO, manual tests aren't repeatable**
|
||||
- "Tests after achieve the same result" → **NO, tests-first catches design flaws**
|
||||
|
||||
**All of these mean**: You're skipping TDD. Write tests first, then implementation.
|
||||
|
||||
**See also**: The superpowers:test-driven-development skill contains additional TDD rationalizations and red flags that apply universally to all code, including Dataform SQLX files.
|
||||
|
||||
## Quick Reference
|
||||
|
||||
| Task | Command | Notes |
|
||||
|------|---------|-------|
|
||||
| Compile only | `dataform compile` | Check syntax, no BigQuery execution |
|
||||
| Dry run | `dataform run --schema-suffix dev --dry-run --actions table_name` | Validate SQL, estimate cost |
|
||||
| Test in dev | `dataform run --schema-suffix dev --actions table_name` | Safe execution in dev environment |
|
||||
| Run with dependencies | `dataform run --schema-suffix dev --include-deps --actions table_name` | Run upstream dependencies first |
|
||||
| Run by tag | `dataform run --schema-suffix dev --tags looker` | Run all tables with tag |
|
||||
| Production deploy | `dataform run --actions table_name` | Only after dev testing succeeds |
|
||||
|
||||
## Common Rationalizations (And Why They're Wrong)
|
||||
|
||||
| Excuse | Reality | Fix |
|
||||
|--------|---------|-----|
|
||||
| "Too urgent to test in dev" | Production failures waste MORE time than dev testing | 3 minutes testing saves 60 minutes debugging |
|
||||
| "It's just a quick report" | "Quick" reports become permanent tables | Use proper architecture from start |
|
||||
| "Business is waiting" | Broken output wastes stakeholder time | Correct results delivered 10 minutes later > wrong results now |
|
||||
| "Hardcoding table path is faster than ${ref()}" | Breaks dependency tracking, creates maintenance nightmare | Create source declaration, use ${ref()} (30 seconds) |
|
||||
| "I'll refactor it later" | Technical debt rarely gets fixed | Do it right the first time (saves time overall) |
|
||||
| "Correctness over elegance" | Architecture = maintainability, not elegance | Proper structure IS correctness |
|
||||
| "I'll add tests after" | After = never | Write tests FIRST (TDD), then implementation |
|
||||
| "I'll add documentation after" | After = never | Add columns: {} in config block immediately |
|
||||
| "Working late, just need it working" | Exhaustion causes mistakes | Discipline matters MORE when tired |
|
||||
| "Column docs are optional for internal tables" | All tables become external eventually | Document everything, always |
|
||||
| "Tests after achieve same result" | Tests-after = checking what it does; tests-first = defining what it should do | TDD catches design flaws early |
|
||||
|
||||
## Red Flags - STOP Immediately
|
||||
|
||||
If you're thinking any of these thoughts, STOP and follow the skill:
|
||||
|
||||
- "I'll skip `--schema-suffix dev` this once"
|
||||
- "No time for `--dry-run`"
|
||||
- "I'll just hardcode the table path instead of using ${ref()}"
|
||||
- "I'll use backticks instead of ${ref()} (it's faster)"
|
||||
- "I'll just create one file instead of intermediate layers"
|
||||
- "Tests are optional for ad-hoc work"
|
||||
- "I'll write tests after the implementation"
|
||||
- "I'll add column documentation later"
|
||||
- "This table doesn't need columns: {} block"
|
||||
- "I'll use a .js file for declarations (faster to write)"
|
||||
- "I'll add schema: config to this operation/test file"
|
||||
- "I'll fix the technical debt later"
|
||||
- "This is different because [business reason]"
|
||||
|
||||
**All of these mean**: You're about to create problems. Follow the non-negotiable practices.
|
||||
|
||||
## Common Mistakes
|
||||
|
||||
### Mistake 1: Using tables before declaring sources
|
||||
|
||||
```sql
|
||||
-- WRONG: Direct table reference
|
||||
FROM `project.external_schema.contacts`
|
||||
|
||||
-- CORRECT: Declare source first
|
||||
FROM ${ref("contacts")}
|
||||
```
|
||||
|
||||
**Fix**: Create source declaration in `definitions/sources/` before using in queries.
|
||||
|
||||
### Mistake 2: Mixing ref() with manual schema qualification
|
||||
|
||||
```sql
|
||||
-- WRONG: When source exists
|
||||
FROM ${ref("dataset_name", "table_name")}
|
||||
|
||||
-- CORRECT
|
||||
FROM ${ref("table_name")}
|
||||
```
|
||||
|
||||
**Fix**: Use single-argument `ref()` when source declaration exists. Dataform handles full path resolution.
|
||||
|
||||
### Mistake 3: Skipping dev testing under pressure
|
||||
|
||||
**Symptom**: "I'll deploy directly to production because it's urgent"
|
||||
|
||||
**Fix**: `--schema-suffix dev` takes 30 seconds longer than production deploy. Production failures take hours to fix.
|
||||
|
||||
### Mistake 4: Creating monolithic transformations
|
||||
|
||||
**Symptom**: 200-line SQLX file with 5 CTEs doing multiple transformations
|
||||
|
||||
**Fix**: Break into intermediate tables. Each table should do ONE transformation clearly.
|
||||
|
||||
### Mistake 5: Missing columns: {} documentation
|
||||
|
||||
**Symptom**: Table config without column descriptions
|
||||
|
||||
**Fix**: Add comprehensive `columns: {}` block to EVERY table with `type: "table"`. Get descriptions from source docs, upstream tables, or business logic.
|
||||
|
||||
### Mistake 6: Writing implementation before tests
|
||||
|
||||
**Symptom**: Creating SQLX file, then adding assertions afterward (or never)
|
||||
|
||||
**Fix**: Follow TDD cycle - write assertions first, watch them fail, write implementation, watch tests pass.
|
||||
|
||||
### Mistake 7: Using .js files for NEW source declarations
|
||||
|
||||
**Symptom**: Creating NEW `definitions/sources/sources.js` files with declare() functions
|
||||
|
||||
**Fix**: Create .sqlx files in `definitions/sources/[system]/[table].sqlx` with proper config blocks and column documentation. Existing .js files can remain until they need modification.
|
||||
|
||||
### Mistake 8: Hardcoded table paths instead of ${ref()}
|
||||
|
||||
**Symptom**: Using backtick-quoted table paths in queries
|
||||
```sql
|
||||
FROM `project.external_api.events`
|
||||
SELECT * FROM project.source_schema.customers
|
||||
```
|
||||
|
||||
**Fix**: ALWAYS use ${ref()} after creating source declarations
|
||||
```sql
|
||||
FROM ${ref("events")}
|
||||
SELECT * FROM ${ref("customers")}
|
||||
```
|
||||
|
||||
**Why critical**: Hardcoded paths break dependency tracking, prevent --schema-suffix from working, and make refactoring impossible.
|
||||
|
||||
### Mistake 9: Adding schema: config to operations or tests
|
||||
|
||||
**Symptom**: Operations or test files with explicit schema configuration
|
||||
```sql
|
||||
config {
|
||||
type: "operations",
|
||||
schema: "dataform", // Wrong!
|
||||
}
|
||||
```
|
||||
|
||||
**Fix**: Remove schema: config - operations and tests use default schemas from workflow_settings.yaml
|
||||
|
||||
## Time Pressure Protocol
|
||||
|
||||
When under extreme time pressure (board meeting in 2 hours, production down, stakeholder waiting):
|
||||
|
||||
1. ✅ **Still use dev testing** - 3 minutes saves 60 minutes debugging
|
||||
2. ✅ **Still use --dry-run** - Catches errors before wasting BigQuery slots
|
||||
3. ✅ **Still create source declarations** - Broken dependencies waste MORE time
|
||||
4. ✅ **Still add columns: {} documentation** - Takes 2 minutes, saves hours explaining to Looker users
|
||||
5. ✅ **Still write tests first (TDD)** - 5 minutes writing assertions prevents production bugs
|
||||
6. ✅ **Still do basic validation** - Wrong results are worse than delayed results
|
||||
7. ⚠️ **Can skip**: Extensive documentation files, peer review, performance optimization
|
||||
8. ⚠️ **Must document**: Tag as "technical_debt", create TODO with follow-up tasks
|
||||
|
||||
**The bottom line**: Safety practices save time. Skipping them wastes time. Even under pressure.
|
||||
|
||||
## Troubleshooting Dataform Errors
|
||||
|
||||
**RECOMMENDED APPROACH:** When encountering ANY bug, test failure, or unexpected behavior, use superpowers:systematic-debugging before attempting fixes. For errors deep in execution or cascading failures, use superpowers:root-cause-tracing to identify the original trigger.
|
||||
|
||||
**Official Reference:** For Dataform-specific errors, configuration issues, or syntax questions, consult https://cloud.google.com/dataform/docs
|
||||
|
||||
### "Table not found" errors
|
||||
|
||||
**Quick fixes:**
|
||||
1. Check source declaration exists in `definitions/sources/`
|
||||
2. Verify ref() syntax (single argument if source exists)
|
||||
3. Check schema/database match in source config
|
||||
4. Run `dataform compile` to see resolved SQL
|
||||
|
||||
**If issue persists:** Use superpowers:systematic-debugging for structured root cause investigation.
|
||||
|
||||
### Dependency cycle errors
|
||||
|
||||
**Quick fixes:**
|
||||
1. Use `${ref("table_name")}` not direct table references
|
||||
2. Check for circular dependencies (A → B → A)
|
||||
3. Review dependency graph in Dataform UI
|
||||
|
||||
**If issue persists:** Use superpowers:root-cause-tracing to trace the dependency chain back to the source of the cycle.
|
||||
|
||||
### Timeout errors
|
||||
|
||||
**Quick fixes:**
|
||||
1. Add partitioning/clustering to config
|
||||
2. Use incremental updates instead of full refresh
|
||||
3. Break large transformations into smaller intermediate tables
|
||||
|
||||
**If issue persists:** Use superpowers:systematic-debugging to investigate query performance systematically.
|
||||
|
||||
## Real-World Impact
|
||||
|
||||
**Scenario**: "Quick" report created without source declarations, skipping dev testing.
|
||||
|
||||
**Cost**:
|
||||
- 10 minutes saved initially
|
||||
- 2 hours debugging "table not found" errors in production
|
||||
- 3 stakeholder escalations
|
||||
- 1 broken morning dashboard
|
||||
- Net loss: 110 minutes
|
||||
|
||||
**With proper practices**:
|
||||
- 13 minutes total (3 extra for dev testing)
|
||||
- Zero production issues
|
||||
- Zero escalations
|
||||
- Net gain: 97 minutes
|
||||
|
||||
**Takeaway**: Discipline is faster than shortcuts.
|
||||
Reference in New Issue
Block a user