Files
2025-11-29 18:45:58 +08:00
..
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00
2025-11-29 18:45:58 +08:00

langgraph-master

PROACTIVE SKILL - Comprehensive guide for building AI agents with LangGraph. Claude invokes this skill automatically when LangGraph development is detected, providing architecture patterns, implementation guidance, and best practices.

Installation

/plugin marketplace add hiroshi75/ccplugins
/plugin install protografico@hiroshi75

Automatic Triggers

Claude automatically invokes this skill when:

  • LangGraph development - Detecting LangGraph imports or StateGraph usage
  • Agent architecture - Planning or implementing AI agent workflows
  • Graph patterns - Working with nodes, edges, or state management
  • Keywords detected - When user mentions: LangGraph, StateGraph, agent workflow, node, edge, checkpointer
  • Implementation requests - Building chatbots, RAG agents, or autonomous systems

No manual action required - Claude provides LangGraph expertise automatically.

Workflow

Detect LangGraph context → Auto-invoke skill → Provide patterns/guidance → Implement with best practices

Manual Invocation (Optional)

To manually trigger LangGraph guidance:

/protografico:langgraph-master

For learning specific patterns:

/protografico:langgraph-master "explain routing pattern"

Learning Resources

The skill provides comprehensive documentation covering:

Category Topics Files
Core Concepts State, Node, Edge fundamentals 01core_concepts*.md
Architecture 6 major graph patterns (Routing, Agent, etc.) 02graph_architecture*.md
Memory Checkpointer, Store, Persistence 03memory_management*.md
Tools Tool definition, Command API, Tool Node 04tool_integration*.md
Advanced Human-in-the-Loop, Streaming, Map-Reduce 05advanced_features*.md
Models Gemini, Claude, OpenAI model IDs 06_llm_model_ids*.md
Examples Chatbot, RAG agent implementations example_*.md

Subagent: langgraph-engineer

The skill includes a specialized protografico:langgraph-engineer subagent for efficient parallel development:

Key Features

  • Functional Module Scope: Implements complete features (2-5 nodes) as cohesive units
  • Parallel Execution: Multiple subagents can develop different modules simultaneously
  • Production-Ready: No TODOs or placeholders, fully functional code only
  • Skill-Driven: Always references langgraph-master documentation before implementation

When to Use

  1. Feature Module Implementation: RAG search, intent analysis, approval workflows
  2. Subgraph Patterns: Complete functional units with nodes, edges, and state
  3. Tool Integration: Full tool integration modules with error handling

Parallel Development Pattern

Planner → Decompose into functional modules
  ├─ langgraph-engineer 1: Intent analysis module (parallel)
  │  └─ analyze + classify + route nodes
  └─ langgraph-engineer 2: RAG search module (parallel)
     └─ retrieve + rerank + generate nodes
Orchestrator → Integrate modules into complete graph

How It Works

  1. Context Detection - Claude monitors LangGraph-related activities
  2. Trigger Evaluation - Checks if auto-invoke conditions are met
  3. Skill Invocation - Automatically invokes langgraph-master skill
  4. Pattern Guidance - Provides architecture patterns and best practices
  5. Implementation Support - Assists with code generation using documented patterns

Example Use Cases

Automatic Guidance

# Claude detects LangGraph usage and automatically provides guidance
from langgraph.graph import StateGraph

# Skill auto-invoked → Provides state management patterns
class AgentState(TypedDict):
    messages: list[str]

Pattern Implementation

User: "Build a RAG agent with LangGraph"
Claude: [Auto-invokes skill]
        → Provides RAG architecture pattern
        → Suggests node structure (retrieve → rerank → generate)
        → Implements with checkpointer for state persistence

Subagent Delegation

User: "Create a chatbot with intent classification and RAG search"
Claude: → Decomposes into 2 modules
        → Spawns langgraph-engineer for each module (parallel)
        → Integrates completed modules into final graph

Benefits

  • Faster Development: Pre-validated architecture patterns reduce trial and error
  • Best Practices: Automatically applies LangGraph best practices and conventions
  • Parallel Implementation: Efficient development through subagent delegation
  • Complete Documentation: 40+ documentation files covering all aspects
  • Production-Ready: Guidance ensures robust, maintainable implementations