# langgraph-master **PROACTIVE SKILL** - Comprehensive guide for building AI agents with LangGraph. Claude invokes this skill automatically when LangGraph development is detected, providing architecture patterns, implementation guidance, and best practices. ## Installation ``` /plugin marketplace add hiroshi75/ccplugins /plugin install protografico@hiroshi75 ``` ## Automatic Triggers Claude **automatically invokes** this skill when: - **LangGraph development** - Detecting LangGraph imports or StateGraph usage - **Agent architecture** - Planning or implementing AI agent workflows - **Graph patterns** - Working with nodes, edges, or state management - **Keywords detected** - When user mentions: LangGraph, StateGraph, agent workflow, node, edge, checkpointer - **Implementation requests** - Building chatbots, RAG agents, or autonomous systems **No manual action required** - Claude provides LangGraph expertise automatically. ## Workflow ``` Detect LangGraph context → Auto-invoke skill → Provide patterns/guidance → Implement with best practices ``` ## Manual Invocation (Optional) To manually trigger LangGraph guidance: ``` /protografico:langgraph-master ``` For learning specific patterns: ``` /protografico:langgraph-master "explain routing pattern" ``` ## Learning Resources The skill provides comprehensive documentation covering: | Category | Topics | Files | | ----------------- | --------------------------------------------- | --------------------------- | | **Core Concepts** | State, Node, Edge fundamentals | 01*core_concepts*\*.md | | **Architecture** | 6 major graph patterns (Routing, Agent, etc.) | 02*graph_architecture*\*.md | | **Memory** | Checkpointer, Store, Persistence | 03*memory_management*\*.md | | **Tools** | Tool definition, Command API, Tool Node | 04*tool_integration*\*.md | | **Advanced** | Human-in-the-Loop, Streaming, Map-Reduce | 05*advanced_features*\*.md | | **Models** | Gemini, Claude, OpenAI model IDs | 06_llm_model_ids\*.md | | **Examples** | Chatbot, RAG agent implementations | example\_\*.md | ## Subagent: langgraph-engineer The skill includes a specialized **protografico:langgraph-engineer** subagent for efficient parallel development: ### Key Features - **Functional Module Scope**: Implements complete features (2-5 nodes) as cohesive units - **Parallel Execution**: Multiple subagents can develop different modules simultaneously - **Production-Ready**: No TODOs or placeholders, fully functional code only - **Skill-Driven**: Always references langgraph-master documentation before implementation ### When to Use 1. **Feature Module Implementation**: RAG search, intent analysis, approval workflows 2. **Subgraph Patterns**: Complete functional units with nodes, edges, and state 3. **Tool Integration**: Full tool integration modules with error handling ### Parallel Development Pattern ``` Planner → Decompose into functional modules ├─ langgraph-engineer 1: Intent analysis module (parallel) │ └─ analyze + classify + route nodes └─ langgraph-engineer 2: RAG search module (parallel) └─ retrieve + rerank + generate nodes Orchestrator → Integrate modules into complete graph ``` ## How It Works 1. **Context Detection** - Claude monitors LangGraph-related activities 2. **Trigger Evaluation** - Checks if auto-invoke conditions are met 3. **Skill Invocation** - Automatically invokes langgraph-master skill 4. **Pattern Guidance** - Provides architecture patterns and best practices 5. **Implementation Support** - Assists with code generation using documented patterns ## Example Use Cases ### Automatic Guidance ```python # Claude detects LangGraph usage and automatically provides guidance from langgraph.graph import StateGraph # Skill auto-invoked → Provides state management patterns class AgentState(TypedDict): messages: list[str] ``` ### Pattern Implementation ``` User: "Build a RAG agent with LangGraph" Claude: [Auto-invokes skill] → Provides RAG architecture pattern → Suggests node structure (retrieve → rerank → generate) → Implements with checkpointer for state persistence ``` ### Subagent Delegation ``` User: "Create a chatbot with intent classification and RAG search" Claude: → Decomposes into 2 modules → Spawns langgraph-engineer for each module (parallel) → Integrates completed modules into final graph ``` ## Benefits - **Faster Development**: Pre-validated architecture patterns reduce trial and error - **Best Practices**: Automatically applies LangGraph best practices and conventions - **Parallel Implementation**: Efficient development through subagent delegation - **Complete Documentation**: 40+ documentation files covering all aspects - **Production-Ready**: Guidance ensures robust, maintainable implementations ## Reference Links - [LangGraph Official Docs](https://docs.langchain.com/oss/python/langgraph/overview) - [LangGraph GitHub](https://github.com/langchain-ai/langgraph)